Влияние радиации на человека 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Влияние радиации на человека



Реферат

Тема:

"Ядерные реакции. Ядерная энергетика"

Выполнил: ученик 11в класса средней школы №160 г. Санкт-Петербурга

Дунаев Иван

2000г.

Содержание

1. КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ............................................................... 2

1.1. Введение.............................................................................................................. 2

1.2. Атомное ядро...................................................................................................... 2

1.3. Альфа-распад..................................................................................................... 2

1.4. Бета-распад........................................................................................................ 3

1.5. Гамма-распад.................................................................................................... 3

1.6. Ядерные реакторы.............................................................................................. 3

1.7. Заключение......................................................................................................... 4

2. ВВЕДЕНИЕ.............................................................................................................. 4

3. АТОМНОЕ ЯДРО.................................................................................................. 5

4. ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР............................................................... 5

5. РАДИОАКТИВНОСТЬ......................................................................................... 6

5.1. Общие сведения.................................................................................................. 6

5.2. Влияние радиации на человека....................................................................... 6

5.2.1. Радиоактивность атмосферы.................................................................... 6

5.2.1.1.    Естественная радиоактивность атмосферы..................................................................... 6

5.2.1.2.    Искусственная радиоактивность атмосферы.................................................................. 7

5.2.2. Радиоактивность вод.................................................................................. 7

5.2.3. Радиоактивность горных пород................................................................. 8

4.3 Альфа-распад..................................................................................................... 8

4.4 Бета-распад........................................................................................................ 9

4.5 Позитронный бета-распад................................................................................ 9

4.6 Электронный захват.......................................................................................... 9

4.7 Гамма-распад.................................................................................................. 10

5 ДЕЛЕНИЕ АТОМНЫХ ЯДЕР........................................................................... 10

5.3 Общие сведения................................................................................................ 10

5.4 Продукты деления............................................................................................ 11

6 ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С АТОМНЫМИ ЯДРАМИ............. 11

7 ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ....................................................................... 12

7.3 Ядерные реакторы............................................................................................ 12

8 ТЕХНИЧЕСКИЕ ОСНОВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ............................. 13

8.3 Особенности ядерного реактора как источника теплоты.......................... 13

8.4 Устройство энергетических ядерных реакторов......................................... 14

8.5 Требования к конструкциям активной зоны и ее характеристики........... 15

8.6 Классификация реакторов............................................................................. 17

9 Заключение..................................................................................................... 21

10 Литература...................................................................................................... 22

 

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение.

Энергетика - важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа экономики государства.

В мире идет процесс индустриализации, который требует дополнительного расхода материалов, что увеличивает энергозатраты. С ростом населения увеличиваются энергозатраты на обработку почвы, уборку урожая, производство удобрений и т.д.

В настоящее время многие природные легкодоступные ресурсы планеты исчерпываются. Добывать сырье приходится на большой глубине или на морских шельфах. Ограниченные мировые запасы нефти и газа, казалось бы, ставят человечество перед перспективой энергетического кризиса. Однако использование ядерной энергии дает человечеству возможность избежать этого, так как результаты фундаментальных исследований физики атомного ядра позволяют отвести угрозу энергетического кризиса путем использования энергии, выделяемой при некоторых реакциях атомных ядер.

Атомное ядро.

Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным  и электрическим квадрупольным моментом Q, определенным радиусом R, изотопическим спином Т  и состоит из нуклонов - протонов и нейтронов. Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения.

Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку, Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температура, давление) и от того, находится ли уран в каких-либо химических соединениях.

Альфа-распад.

Энергия связи ядра характеризует его устойчивость к распаду на составные части. Если энергия связи ядра меньше энергии связи продуктов его распада, то это означает, что ядро может самопроизвольно (спонтанно) распадаться. При альфа-распаде альфа-частицы уносят почти всю энергию и только 2 % ее приходится на вторичное ядро. При альфа-распаде массовое число изменяется на 4 единицы, а атомный номер на две единицы.

Бета-распад.

Это процесс превращения атомного ядра в другое ядро с изменением порядкового номера без изменения массового числа. Различают три типа b-распада: электронный, позитронный и захват орбитального электрона атомным ядром. Последний тип распада принято также называть К -захватом, поскольку при этом наиболее вероятно поглощение электрона с ближайшей к ядру К оболочки. Поглощение электронов с L и М оболочек также возможно, но менее вероятно. Период полураспада b -активных ядер изменяется в очень широких пределах.

При электронном распаде остаточное ядро имеет порядковый номер на единицу больше исходного при сохранении массового числа. Это означает, что в остаточном ядре число протонов увеличилось на единицу, а число нейтронов, наоборот, стало меньше: N=A-(Z+1).

Гамма-распад.

       Стабильные ядра находятся в состоянии, отвечающем наименьшей энергии. Это состояние называется основным. Однако путем облучения атомных ядер различными частицами или высокоэнергетическими протонами им можно передать определенную энергию и, следовательно, перевести в состояния, отвечающие большей энергии. Переходя через некоторое время из возбужденного состояния в основное, атомное ядро может испустить или частицу, если энергия возбуждения достаточно высока, или высокоэнергетическое электромагнитное излучение - гамма-квант.

Замечательным и чрезвычайно важным свойством реакции деления является то, что в результате деления образуется несколько нейтронов. Это обстоятельство позволяет создать условия для поддержания стационарной или развивающейся во времени цепной реакции деления ядер. Действительно, если в среде, содержащей делящиеся ядра, один нейтрон вызывают реакцию деления, то образующиеся в результате реакции нейтроны могут с определенной вероятностью вызвать деление ядер, что может привести при соответствующих условиях к развитию неконтролируемого процесса деления.

Ядерные реакторы.

           При делении тяжелых ядер образуется несколько свободных нейтронов. Это позволяет организовать так называемую цепную реакцию деления, когда нейтроны, распространяясь в среде, содержащей тяжелые элементы, могут вызвать их деление с испусканием новых свободных нейтронов. Если среда такова, что число вновь рождающихся нейтронов увеличивается, то процесс деления лавинообразно нарастает. В случае, когда число нейтронов при последующих делениях уменьшается, цепная ядерная реакция затухает.

Ядерным реактором называется устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.

Для характеристики цепной реакции деления используется величина, называемая коэффициентом размножения К. Это отношение числа нейтронов определенного поколения к числу нейтронов предыдущего поколения. Для стационарной цепной реакции деления К =1. Размножающаяся система (реактор), в которой К =1, называется критической. Если К >1, число нейтронов в системе увеличивается, и она в этом случае называется надкритической. При К < 1 происходит уменьшение числа нейтронов и система называется подкритической. В стационарном состоянии реактора число вновь образующихся нейтронов равно числу нейтронов, покидающих реактор (нейтроны утечки) и поглощающихся в его пределах. В критическом реакторе присутствуют нейтроны всех энергий.

При работе реактора в тепловыводящих элементах (твэлах), а также во всех его конструктивных элементах в различных количествах выделяется теплота. Это связано, прежде всего, с торможением осколков деления, их бета - и гамма-излучениями, а также ядер, испытывающих взаимодействие с нейтронами, и, наконец, с замедлением быстрых нейтронов. Осколки при делении ядра топлива классифицируются по скоростям, соответствующим температуре в сотни миллиардов градусов.

Особенность ядерного реактора состоит в том, что 94% энергии деления превращается в теплоту мгновенно, т.е. за время, в течение которого мощность реактора или плотность материалов в нем не успевает заметно измениться. Поэтому при изменении мощности реактора тепловыделение следует без запаздывания за процессом деления топлива.

Заключение.

Энергетическая проблема - одна из важнейших проблем, которые сегодня приходится решать человечеству. Уже стали привычными такие достижения науки и техники, как средства мгновенной связи, быстрый транспорт, освоение космического пространства. Но все это требует огромных затрат энергии. Резкий рост производства и потребления энергии выдвинул новую острую проблему загрязнения окружающей среды, которое представляет серьезную опасность для человечества.

Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.

На ближайшем этапе развития энергетики (первые десятилетия XXI в.) наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.

 

ВВЕДЕНИЕ

 

Энергетика - важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа экономики государства.

В мире идет процесс индустриализации, который требует дополнительного расхода материалов, что увеличивает энергозатраты. С ростом населения увеличиваются энергозатраты на обработку почвы, уборку урожая, производство удобрений и т.д.

В настоящее время многие природные легкодоступные ресурсы планеты исчерпываются. Добывать сырье приходится на большой глубине или на морских шельфах. Ограниченные мировые запасы нефти и газа, казалось бы, ставят человечество перед перспективой энергетического кризиса. Однако использование ядерной энергии дает человечеству возможность избежать этого, так как результаты фундаментальных исследований физики атомного ядра позволяют отвести угрозу энергетического кризиса путем использования энергии, выделяемой при некоторых реакциях атомных ядер.

 

АТОМНОЕ ЯДРО

 

Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным  и электрическим квадрупольным моментом Q, определенным радиусом R, изотопическим спином Т  и состоит из нуклонов - протонов и нейтронов.

Число нуклонов А в ядре называется массовым числом. Число Z называют зарядовым числом ядра или атомным номером. Поскольку Z определяет число протонов, а А - число нуклонов в ядре, то число нейронов в атомном ядре N=A-Z. Атомные ядра с одинаковыми Z, но различными А называются изотопами. В среднем на каждое значение Z приходится около трех стабильных изотопов. Например, 28Si, 29Si, 30Si являются стабильными изотопами ядра Si. Кроме стабильных изотопов,  большинство элементов имеют и нестабильные изотопы, для которых характерно ограниченное время жизни.

 Ядра с одинаковым массовым числом А называются изобарами, а с одинаковым числом нейтронов— изотонами.

Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения.

 

ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР

 

Экспериментальные измерения масс атомных ядер, выполненные с большой точностью, показывают, что масса ядра всегда меньше суммы масс составляющих его нуклонов.

 

Энергия связи - это энергия, которую необходимо затратить, чтобы разделить ядро на составляющие его нуклоны. Энергия связи, отнесенная к массовому числу А, называется средней энергией связи нуклона в атомном ядре (энергия связи на один нуклон). Энергия связи приблизительно постоянна для всех стабильных ядер и примерно равна 8 МэВ. Исключением является область легких ядер, где средняя энергия связи растет от нуля (А=1) до 8 МэВ для ядра 12С. Аналогично энергия связи на один нуклон можно ввести энергию связи ядра относительно других составных его частей. В отличие от средней энергии связи нуклонов количество энергии связи нейрона и протона изменяется от ядра к ядру. Часто вместо энергии связи используют величину, называемую дефектом массы и равную разности масс и массового числа атомного ядра.

РАДИОАКТИВНОСТЬ

Общие сведения.

Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку, Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температура, давление) и от того, находится ли уран в каких-либо химических соединениях.

Английскими физиками Э. Резерфордом и Ф. Содди было доказано, что во всех радиоактивных процессах происходят взаимные превращения атомных ядер химических элементов. Изучение свойств излучения, сопровождающего эти процессы в магнитном и электрическом полях, показало, что оно разделяется на a - частицы (ядра гелия), b- частицы (электроны) и g- лучи (электромагнитное излучение с очень малой длиной волны).

Атомное ядро, испускающее g-кванты, a-, b- или другие частицы, называется радиоактивным ядром. В природе существует 272 стабильных атомных ядра. Все остальные ядра радиоактивны и называются радиоизотопами.

Радиоактивность атмосферы.

Радиоактивность атмосферы обусловлена присутствием в атмосфере радиоактивных газов и аэрозолей, попадающих в неё в результате процессов, происходящих в природе, и деятельности человека. Соответственно различают естественную и искусственную радиоактивность атмосферы.

Радиоактивность вод.

Радиоактивность вод обусловлена присутствием в водах радиоактивных веществ, поступающих из атмосферы и вымываемых из почв и горных пород. В водах присутствуют как естественные природные изотопы (40K, 222Rn, 226Ra, 238U и другие), так и искусственные (в основном 90Sr, 90Y и 137Cs), возникшие вследствие ядерных взрывов и ядерных аварий. Как видно из таблицы 1, содержание естественных радиоактивных веществ в водах в зависимости от их происхождения колеблется в значительной степени.

 

Таблица 1.

Происхождение воды

Концентрация в 10-12 кюри/л

40К 226Ra 222Rn 238U
Подземные воды 0 4(до 26) до 200 2.4 (до 40)
Источники и ручьи 0 до 140 до 3·104 до 4
Речные воды 8 0.2 (до 0.8) 0.2-0.3 0.2 (до 20)
Озёрные воды 13 1 (до 8) 0 3
Морская вода 300 0.08 (до 45) 0 0.7

 

Искусственные радиоактивные вещества в воды поступают вместе с осадками из атмосферы. Так, в результате активных испытаний ядерного оружия концентрация 90Sr в природных водах до 1968 непрерывно возрастала, достигая в отдельных случаях 1·10-11 кюри/л. Другой основной источник попадания искусственных радиоактивных веществ в водоёмы — сбросные воды предприятий по производству ядерного топлива.

Альфа-распад.

Энергия связи ядра характеризует его устойчивость к распаду на составные части. Если энергия связи ядра меньше энергии связи продуктов его распада, то это означает, что ядро может самопроизвольно (спонтанно) распадаться. При альфа-распаде альфа-частицы уносят почти всю энергию и только 2 % ее приходится на вторичное ядро. При альфа-распаде массовое число изменяется на 4 единицы, а атомный номер на две единицы.

Начальная энергия альфа-частицы составляет 4-10 МэВ. Поскольку альфа-частицы имеют большую массу и заряд, длина их свободного пробега в воздухе невелика. Так, например, длина свободного пробега в воздухе альфа-частиц, испускаемых ядром урана, равна 2,7 см, а испускаемых радием, - 3,3 см.

Бета-распад.

Это процесс превращения атомного ядра в другое ядро с изменением порядкового номера без изменения массового числа. Различают три типа b-распада: электронный, позитронный и захват орбитального электрона атомным ядром. Последний тип распада принято также называть К -захватом, поскольку при этом наиболее вероятно поглощение электрона с ближайшей к ядру К оболочки. Поглощение электронов с L и М оболочек также возможно, но менее вероятно. Период полураспада b -активных ядер изменяется в очень широких пределах.

Число бета-активных ядер, известных в настоящее время, составляет около полутора тысяч, но только 20 из них являются естественными бета-радиоактивными изотопами. Все остальные получены искусственным путем.

Непрерывное распределение по кинетической энергии испускаемых при распаде электронов объясняется тем обстоятельством, что наряду с электроном испускается и антинейтрино. Если бы не было антинейтрино, то электроны имели бы строго определенный импульс, равный импульсу остаточного ядра. Резкий обрыв спектра наблюдается при значении кинетической энергии, равной энергии бета-распада. При этом кинетические энергии ядра и антинейтрино равны нулю и электрон уносит всю энергию, выделяющихся при реакции.

При электронном распаде остаточное ядро имеет порядковый номер на единицу больше исходного при сохранении массового числа. Это означает, что в остаточном ядре число протонов увеличилось на единицу, а число нейтронов, наоборот, стало меньше: N=A-(Z+1).

Позитронный бета-распад.

При позитронном распаде сохраняется полное число нуклонов, но в конечном ядре на один нейтрон больше, чем в исходном. Таким образом, позитронный распад может быть интерпретирован как реакция превращения внутри ядра одного протона в нейтрон с испусканием позитрона и нейтрино.

Электронный захват.

 К электронному захвату относится процесс поглощения атомом одного из орбитальных электронов своего атома. Поскольку наиболее вероятен захват электрона с орбиты, наиболее близко расположенных к ядру, то с наибольшей вероятность поглощаются электроны К -оболочки. Поэтому этот процесс называется также К -захватом.

С гораздо меньшей вероятностью происходит захват электронов с L -, M -оболочек. После захвата электрона с К -оболочки происходит ряд переходов электронов с орбиты на орбиту, образуется новое атомное состояние испускается рентгеновский квант.

Гамма-распад.

 Стабильные ядра находятся в состоянии, отвечающем наименьшей энергии. Это состояние называется основным. Однако путем облучения атомных ядер различными частицами или высокоэнергетическими протонами им можно передать определенную энергию и, следовательно, перевести в состояния, отвечающие большей энергии. Переходя через некоторое время из возбужденного состояния в основное, атомное ядро может испустить или частицу, если энергия возбуждения достаточно высока, или высокоэнергетическое электромагнитное излучение - гамма-квант.

Поскольку возбужденное ядро находится в дискретных энергетических состояниях, то и гамма-излучение характеризуется линейчатым спектром.

 

ДЕЛЕНИЕ АТОМНЫХ ЯДЕР

Общие сведения.

Явление деления тяжелых атомных ядер на два осколка было открыто Ганом и Штрассманом в 1939 г. При изучении взаимодействия нейтронов различных энергий и ядер урана. Несколько позже, в 1940 г. советские физики К.А.Петржак и Г.И. Флеров обнаружили самопроизвольное (спонтанное) деление ядер урана. При спонтанном деление и делении, вызванном нейронами, как правило, образуется асимметричные осколки, отношение масс которых примерно равно 3: 2.

При реакции деления выделяется очень большая энергия. Энергия деления высвобождается в виде кинетической энергии ядер-осколков, кинетической энергии испускаемых ядрами-осколками электронов, гамма-квантов, нейтрино, нейтронов.

Основная часть энергии деления приходится на энергию ядер-осколков, поскольку под действием кулоновских сил отталкивания они приобретают большую кинетическую энергию. Основная часть энергии деления выделяется в виде кинетической энергии ядер-осколков.

Замечательным и чрезвычайно важным свойством реакции деления является то, что в результате деления образуется несколько нейтронов. Это обстоятельство позволяет создать условия для поддержания стационарной или развивающейся во времени цепной реакции деления ядер. Действительно, если в среде, содержащей делящиеся ядра, один нейтрон вызывают реакцию деления, то образующиеся в результате реакции нейтроны могут с определенной вероятностью вызвать деление ядер, что может привести при соответствующих условиях к развитию неконтролируемого процесса деления. Число вторичных нейтронов не постоянно для всех тяжелых ядер и зависит как от энергии вызвавшего деление нейтрона, так и от свойств ядра-мишени. Среди нейтронов деления кроме так называемых мгновенных нейтронов, испускаемых за 10-15 с после процесса деления, есть также и запаздывающие нейтроны. Они испускаются в течение нескольких минут с постепенно убывающей интенсивность. Мгновенные нейтроны составляют более 99% полного числа нейтронов деления, а их энергия заключена в широком диапазоне: от тепловой энергии и до энергии приблизительно равной 10 МэВ.

Запаздывающие нейтроны испускаются возбужденными ядрами образующихся после бета-распада продуктов деления - ядер-предшественников. Поскольку испускание нуклонов возбужденным ядром происходит мгновенно, то во время испускания запаздывающего нейтрона после акта деления будет определяться постоянной распада ядра-предшественника.

Продукты деления.

 В результате деления тяжелых ядер образуются, как правило, два ядра-осколка с различной массой. В среднем отношение масс легких и тяжелых осколков равно 2: 3. Как правило, ядра-осколки имеют большой избыток нейтронов и поэтому неустойчивы относительно бета-распада. Массовые числа А продуктов деления меняются от 72 до 161, а атомные номера от 30 до 65. Вероятность симметричного деления на два осколка с приблизительно равными массами составляет всего 0,04%. Доля симметричного деления возрастает по мере увеличения энергии первичного нейтрона, вызывающего деление атомного ядра.

 

ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ

Ядерные реакторы.

 При делении тяжелых ядер образуется несколько свободных нейтронов. Это позволяет организовать так называемую цепную реакцию деления, когда нейтроны, распространяясь в среде, содержащей тяжелые элементы, могут вызвать их деление с испусканием новых свободных нейтронов. Если среда такова, что число вновь рождающихся нейтронов увеличивается, то процесс деления лавинообразно нарастает. В случае, когда число нейтронов при последующих делениях уменьшается, цепная ядерная реакция затухает.

Для получения стационарной цепной ядерной реакции, очевидно, необходимо создать такие условия, чтобы каждое ядро, поглотившее нейтрон, при делении выделяло в среднем один нейтрон, идущий на деление второго тяжелого ядра.   

Ядерным реактором называется устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.

Цепная ядерная реакция в реакторе может осуществляться только при определенном количестве делящихся ядер, которые могут делиться при любой энергии нейтронов. Из делящихся материалов важнейшим является изотоп 235U, доля которого в естественном уране составляет всего 0,714 %.

Хотя 238U и делится нейтронами, энергия которых превышает 1,2 МэВ, однако самоподдерживающаяся цепная реакция на быстрых нейтронах в естественном уране не возможна из-за высокой вероятности неупругого взаимодействия ядер 238U с быстрыми нейтронами. При этом энергия нейтронов становится ниже пороговой энергии деления ядер 238U.

Использование замедлителя приводит к уменьшению резонансного поглощения в 238U, так как нейтрон может пройти область резонансных энергий в результате столкновения с ядрами замедлителя и поглотиться ядрами 235U, 239Pu, 233U, сечение деления которых существенно увеличивается с уменьшением энергии нейтронов. В качестве замедлителей используют материалы с малым массовым числом и небольшим сечением поглощения (вода, графит, бериллий и др.).

Для характеристики цепной реакции деления используется величина, называемая коэффициентом размножения К. Это отношение числа нейтронов определенного поколения к числу нейтронов предыдущего поколения. Для стационарной цепной реакции деления К =1. Размножающаяся система (реактор), в которой К =1, называется критической. Если К >1, число нейтронов в системе увеличивается, и она в этом случае называется надкритической. При К < 1 происходит уменьшение числа нейтронов и система называется подкритической. В стационарном состоянии реактора число вновь образующихся нейтронов равно числу нейтронов, покидающих реактор (нейтроны утечки) и поглощающихся в его пределах. В критическом реакторе присутствуют нейтроны всех энергий. Они образуют так называемый энергетический спектр нейтронов, который характеризует число нейтронов различных энергий в единице объема в любой точке реактора. Средняя энергия спектра нейтронов определяется долей замедлителя, делящихся ядер (ядра горючего) и других материалов, которые входят в состав активной зоны реактора. Если большая часть делений происходит при поглощении тепловых нейтронов, то такой реактор называется реактором на тепловых нейтронах. Энергия нейтронов в такой системе не превышает 0.2 эВ. Если большая часть делений в реакторе происходит при поглощении быстрых нейтронов, такой реактор называется реактором на быстрых нейтронах.

В активной зоне реактора на тепловых нейтронах наряду с ядерным топливом находится значительная масса замедлителя-вещества, отличающегося большим сечением рассеяния и малым сечением поглощения.

Активная зона реактора практически всегда, за исключением специальных реакторов, окружена отражателем, возвращающим часть нейронов в активную зону за счет многократного рассеяния. В реакторах на быстрых нейронах активная зона окружена зонами воспроизводства. В них происходит накопление делящихся изотопов. Кроме того, зоны воспроизводства выполняют и функции отражателя. В ядерном реакторе происходит накопления продуктов деления, которые называются шлаками. Наличие шлаков приводит к дополнительным потерям свободных нейтронов.

Ядерные реакторы в зависимости от взаимного размещения горючего и замедлителя подразделяются на гомогенные и гетерогенные. В гомогенном реакторе активная зона представляет собой однородную массу топлива, замедлителя и теплоносителя в виде раствора, смеси или расплава. Гетерогенным называется реактор, в котором топливо в виде блоков или тепловыделяющих сборок размещено в замедлителе, образуя в нем правильную геометрическую решетку.

 

Требования к конструкциям активной зоны и ее характеристики.

 Активная зона реактора должна быть спроектирована так, чтобы исключалась возможность непредусмотренного перемещения ее составляющих, приводящего к увеличению реактивности. Основной конструктивной деталью гетерогенной активной зоны является тепловыводящий элемент, в значительной мере определяющий ее надежность, размеры и стоимость. В энергетических реакторах, как правило, используются стержневые твэлы с топливом в виде прессованных таблеток двуокиси урана, заключенных в оболочку из стали или циркониевого сплава. Твэлы для удобства собираются в тепловыделяющие сборки (ТВС), которые устанавливаются в активной зоне ядерного реактора.

В твэлах происходит генерация основной доли тепловой энергии и передача ее теплоносителю. Более 90% всей энергии, освобождающейся при делении тяжелых ядер, выделяется внутрь твэлов и отводится обтекающим твэлы теплоносителем. Твэлы работают в очень тяжелых тепловых режимах: максимальная плотность теплового потока от твэла к теплоносителю достигает (1 - 2)·106 Вт/ м2, тогда как в современных паровых котлах она равна (2 - 3)·105 Вт/м2. Кроме того, в сравнительно небольшом объеме ядерного топлива выделяется большое количество теплоты, т.е. энергонапряженность ядерного топлива также очень высока. Удельное тепловыделение в активной зоне достигает 108 -109 Вт/м3, в то время как в современных паровых котлах оно не превышает 107Вт/м3.

Большие тепловые потоки, проходящие через поверхность твэлов, и значительная энергонапряженность топлива требуют исключительно высокой стойкости и надежности твэлов. Помимо этого, условия работы твэлов осложняются высокой рабочей температурой, достигающей 300 - 600 oС на поверхности оболочки, возможностью тепловых ударов, вибрацией, наличием потока нейтронов (флюенс достигает 1027 нейтрон/м2).

К твэлам предъявляются высокие технические требования: простота конструкции; механическая устойчивость и прочность в потоке теплоносителя, обеспечивающая сохранение размеров и герметичности; малое поглощение нейтронов конструкционным материалом твэла и минимум конструкционного материла в активной зоне; отсутствие взаимодействие ядерного топлива и продуктов деления с оболочкой твэлов, теплоносителем и замедлителем при рабочих температурах. Геометрическая форма твэла должна обеспечивать требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты теплоносителем от всей поверхности твэла, а также гарантировать большую глубину выгорания ядерного топлива  и высокую степень удержания продуктов деления. Твэлы должны обладать радиационной стойкостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций; обладать простотой и экономичностью регенерации ядерного топлива и низкой стоимостью.

В целях безопасности надежная герметичность оболочек тепловыводящих элементов должна сохраняться в течение всего срока работы активной зоны (3 -5 лет) и последующего хранения отработавших твэлов до отправки на переработку (1 -3 года). При проектировании активной зоны необходимо заранее установить и обосновать допустимые пределы повреждения твэлов (количество и степень повреждения). Активная зона проектируется таким образом, чтобы при работе на протяжении всего ее расчетного срока службы не превышались установленные пределы повреждения твэлов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителем, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации возможно нарушение герметичности оболочек отдельных твэлов. Различают два вида такого нарушения: образование микротрещин, через которые газообразные продукты деления выходят из твэла в теплоноситель (дефект типа газовой плотности); возникновение дефектов, при которых возможен прямой контакт топлива с теплоносителем.

Условия работы твэлов в значительной мере определяются конструкцией активной зоны, которая должна обеспечивать проектную геометрию размещения твэлов и необходимое с точки зрения температурных условий распределения теплоносителя. Через активную зону при работе реактора из мощности должен поддерживаться стабильный расход теплоносителя, гарантирующего надежный теплоотвод. Активная зона должна быть оснащена датчиками внутриреакторного контроля, которые дают информацию о распределении мощности, нейтронного потока, температурных условиях твэлов и расходе теплоносителя.

Активная зона энергетического реактора должна быть спроектирована так, чтобы внутренний механизм взаимодействия нейтронно-физических и теплофизических процессов при любых возмущениях коэффициента размножения устанавливал новый безопасный уровень мощности. Практически безопасность ядерной энергетической установки обеспечивается, с одной стороны, устойчивостью реактора (уменьшением коэффициента размножения с ростом температуры и мощности активной зоны), а с другой стороны - надежностью системы автоматического регулирования и защиты.

С целью обеспечения безопасности в глубину конструкция активной зоны и характеристики ядерного топлива должны исключать возможность образования критических масс делящихся материалов при разрушении активной зоны и расплавлении ядерного топлива. При конструировании активной зоны должна быть предусмотрена возможность введения поглотителя нейтронов для прекращения цепной реакции в любых случаях, связанных с нарушением охлаждения активной зоны.

Активная зона, содержащая большие объемы ядерного топлива для компенсации выгорания, отравления и температурного эффекта, имеет как бы несколько критических масс. Поэтому каждый критический объем топлива должен быть обеспечен средствами компенсации реактивности. Они должны размещаться в активной зоне таким образом, чтобы исключить возможность возникновения локальных критмасс.

Классификация реакторов.

Реакторы классифицируют по уровню энергии нейтронов, участвующих в реакции деления, по принципу размещения топлива и замедлителя, целевому назначению, виду замедлителя и теплоносителя и их физическому состоянию.

По уровню энергетических нейтронов: реакторы могут работать на быстрых нейтронах, на тепловых и на нейтронах промежуточных (резонансных) энергий и в соответствии с этим делятся на ректоры на тепловых, быстрых и промежуточных нейтронах (иногда для краткости их называют тепловыми, быстрыми и промежуточными).



Поделиться:


Последнее изменение этой страницы: 2020-03-26; просмотров: 105; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.219.166 (0.091 с.)