Влияние ионизирующего излучения на частоту хромосомных аберраций в мейозе 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Влияние ионизирующего излучения на частоту хромосомных аберраций в мейозе



 

Чувствительность клеток к излучению может быть разной в связи с различным физическим состоянием молекул в протоплазме. Это обстоятельство имеет большое значение, так как в различные периоды жизнедеятельности клетки физические свойства ее макромолекул и структур меняются.

Опыты по использованию микропучков для облучения отдельных структур и участков клетки показали, что наиболее губительно излучение действует на ядро и хромосомы. В облученных клетках происходят обратимые и необратимые изменения: пикноз ядра, склеивание хромосом, фрагментация хромосом, образование гигантских ядер и многоядерных клеток, нарушение полярности делений, возникновение ядер с различным числом хромосом. Частота и характер хромосомных аберраций зависит от дозы облучения и от того, в какой период митотического и мейотического циклов было произведено облучение. Воздействие возможно в двух состояниях хромосом: 1) на недуплицированные хромосомы (интерфаза, период G1); 2) на дуплицированные хромосомы (профаза, метафаза, период G2).

Облучая микроспоры традесканции рентгеновскими лучами, Сакс установил, что при этом возникают простые терминальные делеции и изохроматидные аберрации, частота которых линейно возрастала с увеличением дозы. Выход таких аберраций не зависел от фактора времени. Результаты этих опытов позволили Саксу заключить, что разрывы хромосом, происходящие при облучении, не зависят друг от друга, и частота их прямопропорциональна дозе облучения. Предполагалось, что часть разрывов может остаться невоссоединенной и явиться причиной делеций. Большая же их часть воссоединяется, восстанавливая исходную структуру, а при неправильном слиянии приводит к обмену фрагментами. Обычно в обмене участвуют те разрывы, которые находятся в непосредственной близости друг от друга[14].

Сейчас есть данные о том, что цепи ДНК в процессе репликации подвергаются разрывам. Если эти разрывы заживляются при участии ферментов, осуществляющих пострепликативное восстановление после облучения или последние этапы восстановления по механизму выщепления ресинтеза, то мутации чувствительности к ионизирующим излучениям должны вести к увеличению спонтанной летальности или спонтанной мутабельности.

Ли и Кетчсайд в 1942 году показали, что разрывы под действием радиации образуются в результате нескольких актов ионизации, происходящих внутри хромосомной нити или около нее. Существование двух независимых эффектов радиации (разрыв и соединения) было хорошо доказано на разных объектах. Например, разрывы хромосом микроспор традесканции остаются способными к соединению в течение 20-30 минут после облучения [15].

По классической теории образования аберраций радиация вызывает множество разрывов хромосом,значительная часть которых соединяется.Большинство оставшихся разрывов вовлекается в обмен,а остальные проявляются в метафазе.Таким образом,разрывы хромосом и хроматид рассматриваются как последствия первичного радиобиологического эффекта,который реализуется в ходе интерфазы [13].

Предполагается, что хромосомный тип аберраций возникает при действии облучения до репликации хромосом, а хроматидный - при облучении реплицированных хромосом. Многими исследователями доказано, что период S разделяет время образования хромосомных и хроматидных аберраций. Иначе говоря, облучения в пресинтетический период вызывает аберрации хромосомного типа, а в постсинтетический - хроматидного типа. С наступлением синтетического периода частота хромосомных разрывов резко снижается, а хроматидных - возрастает.

Единственным точным методом оценки действия радиации на живые клетки является прижизненное наблюдение облученных клеток. В данном случае можно непосредственно установить контроль за определенной клеткой сразу после облучения и без малейших погрешностей определить фазу на которой она была облучена. В тех случаях, когда непосредственного наблюдения за облученными клетками установить нельзя, прибегают к фиксации материала через определенное время после облучения. Поскольку учет перестроек хромосом можно производить только в метафазе, анафазе и ранней телофазе, то зная время в момент облучения и в момент фиксации, а также продолжительность каждой фазы, можно высчитать, в какой фазе была облучена клетка [16]. Нужно знать, сколько времени продолжается каждая фаза в цикле клеточного деления каждого растения. Например, для лука репчатого при 20 °С интерфаза продолжается 20 - 26 часов, от ранней профазы до анафазы проходит два часа, анафаза и телофаза вместе длятся около 45 минут, весь цикл деления клетки продолжается 23 - 29 часов. В другом литературном источнике указаны иные данные: общая длительность митотического цикла у Allium cepa составляет 13-15 часов при температуре 24-25 °С.

Зная длительность промежутка времени от момента облучения до фиксации и наблюдая состояние клетки после фиксации можно определить, в какой фазе находилось ядро клетки во время облучения. Пыльник обычно содержит до 1000 клеток, пригодных для наблюдения. Поскольку различные бутоны в одном соцветии содержат микроспоры в последовательных фазах развития, то при одной экспозиции можно обработать клетки на различных стадиях.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-02; просмотров: 328; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.200.219.10 (0.007 с.)