Способы измерений, вычисления и увязка высот вершин теодолитных ходов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Способы измерений, вычисления и увязка высот вершин теодолитных ходов.



 

Необходимость такого уравнивания возникает в связи с погрешностями, возникающими, как правило, при выполнении линейных измерений. При уравнивании необходимо выполнить следующие действия:

- определить невязки по осям абсцисс и ординат, абсолютную и относительную линейные невязки, т.е.

fAX=П-Т,

fAY=П-Т,

где П - практическая сумма измеренных углов,

Т - теоретическое значение горизонтальных углов.

 fабс = √f2AX+ f2AY

fотн= fабс /Sd

- оценить полученную невязку сравнением с допустимым значением;

fотн < 1/2000;

- ввести поправки в уравниваемые величины с обратным знаком знаку невязки и прямо пропорционально горизонтальным проложениям с округлением до 0, 01м;

- выполнить контроль уравнивания:

а) сумма поправок должна быть равна величине невязки с обратным знаком,

б) сумма исправленных значений должна равняться теоретическому значению.

 

 

31. Методы плановой съемки подробностей местности.

 

Съемку характерных подробностей ситуации местности производят в зависимости от конкретных условий местности и имеющихся в наличии приборов одним из следующих способов: прямоугольных координат; полярным; прямых угловых засечек; линейных засечек; обхода; створов; наземно-космическим.

При съемках методом прямоугольных координат положение каждой ситуационной точки местности устанавливают по величинам абциссы X и ординатой Y. Метод прямоугольных координат наиболее часто используют при съемке притрассовой полосы линейных сооружений в ходе разбивки пикетажа. Ширину съемки притрассовой полосы в масштабе 1:2000 принимают по 100 м в обе стороны от трассы, при этом в пределах ожидаемой полосы отвода съемку ведут инструментально, а далее глазомерно. Теодолитную съемку методом полярных координат применяют преимущественно в открытой местности, при этом положение каждой ситуационной точки определяют горизонтальным углом Р, измеряемым от соответствующей стороны теодолитного хода, и расстоянием S, измеряемым от соответствующей точки съемочного обоснования. Съемку характерных точек местности наиболее часто осуществляют оптическими теодолитами с измерением расстояний нитяным дальномером. Метод прямых угловых засечек применяют главным образом в открытой местности, там, где не представляется возможным производить непосредственное измерение расстояний до интересуемых точек местности.

 

Съемку методом прямых угловых засечек обычно ведут оптическими теодолитами и особенно часто используют при производстве в гидрометрических работ на реках: измерение поверхностных скоростей течения поплавками, траекторий льдин и речных судов, при выполнении подводных съемок дна русел рек и водоемов и т. д. Метод линейных засечек применяют, если условия местности позволяют легко и быстро производить линейные измерения до характерных ситуационных точек местности. Измерения производят лентами или рулетками от базисов, расположенных на сторонах съемочного обоснования. Положение каждой снимаемой точки местности определяют измерением двух горизонтальных расстояний S\ и Si с разных концов базиса. Метод обхода реализуют проложением теодолитного хода по контуру снимаемого объекта с привязкой этого хода к съемочному обоснованию.

Углы рь р2,..., Pw снимают при одном положении круга теодолита, а измерения длин сторон осуществляют землемерной лентой или рулеткой, нитяным дальномером или светодальномером электронного тахеометра. Метод обхода используют, как правило, в закрытой местности для обозначения недоступных объектов значительной площади: болота, запретные

зоны, территории хозяйственных объектов и т. д. Суть метода створов состоит в том, что на прямой между двумя известными точками, размещенными на сторонах съемочного обоснования (например М и N), с помощью одного из мерных приборов определяют положение характерных ситуационных точек местности.

Метод створов находит применение, главным образом, при изысканиях аэродромов, для установления ситуационных особенностей местности в ходе топографических съемок методом геометрического нивелирования по квадратам. При производстве изысканий других инженерных объектов метод створов применяют крайне редко. Наземно-космический метод горизонтальной съемки состоит в том, что для получения плановых координат характерных ситуационных точек местности используют приемники систем спутниковой навигации «GPS». Учитывая высокую стоимость приемников GPS высокого класса точности («геодезическою класса»), можно воспользоваться сравнительно недорогими приемниками среднего класса точности («класса ГИС»), но при использовании их в режиме работы с базовыми станциями — «дифференциальными GPS — DGPS». Принцип горизонтальной съемки наземно-космическим методом в режиме «DGPS» состоит в получении координат ситуационных точек местности с геодезической точностью посредством корректирующих сигналов приемниками «GPS» среднего класса от базовой станции «DGPS», установленной на точке местности с известными координатами (например, на пункте государственного геодезической сети). Обычно одна базовая станция обслуживает съемку приемниками «GPS» в радиусе до 10 км. Число съемщиков на снимаемой территории ограничивается только количеством имеющихся в наличии у исполнителей приемников «GPS». Поскольку необходимая точность определения плановых координат точек местности (в отличие от высотных) обеспечивается практически при любых комбинациях созвездий навигационных спутников на небосклоне, наземно-космические методы горизонтальных съемок являются весьма перспективными. При производстве теодолитных съемок ведут абрис и журнал измерений. Абрис представляет собой схематический чертеж отдельных сторон съемочного обоснования и контуров ситуации в любом приемлемом масштабе, но с обязательным указанием величин промеров. В полевом журнале записывают результаты измерения углов теодолитом.

При теодолитной съемке вдоль трассы инженерного сооружения ведут угломерный журнал, а абрис изображают в пикетажном журнале обычно в масштабе 1:2000.

 

32. Сущность тахеометрической съемки. Планово-высотное обоснование тахеометрических съемок. Абрис. Съемка ситуации и рельефа.

 

Тахеометрическая съемка является самым распространенным видом наземных топографических съемок, применяемых при инженерных изысканиях объектов строительства. Высокая производительность тахеометрических съемок обеспечивается тем, что все измерения выполняют комплексно с использованием одного геодезического прибора — теодолита-тахеометра. При этом положение снимаемой точки местности в плане определяют измерением полярных координат: измеряют горизонтальный угол между направлениями на одну из соседних точек съемочного обоснования и снимаемую точку и измеряют расстояние до точки нитяным дальномером или лазерным дальномером электронного тахеометра. Высотное положение снимаемых точек определяют методом тригонометрического нивелирования: горизонтальная проекция расстояния d = Lcos2ν, превышение h=dtgν+i-l.

Тахеометрические съемки используют для подготовки крупномасштабных топографических планов и ЦММ. Основными масштабами для производства тахеометрических съемок являются: 1:500, 1:1000 и 1:2000. Важным достоинством тахеометрической съемки является то, что при высокой производительности полевых работ, существенную долю объема работ по подготовке топографических планов местности и ЦММ удается перенести в камеральные условия, где есть возможность широкого применения средств автоматизации и вычислительной техники.

Планово-высотное обоснование тахеометрических съемок, со съемочных точек которого осуществляют съемку подробностей рельефа и ситуации местности, обычно создают двумя способами: прокладкой теодолитного хода (разомкнутого или замкнутого) с измерением горизонтальных углов полным приемом оптического теодолита или электронного тахеометра и промерами горизонтальных проекций сторон землемерной лентой или светодальномером. Высоты съемочных точек определяют геометрическим нивелированием; прокладкой теодолитного хода с измерением горизонтальных углов полным приемом теодолита, определением горизонтальных расстояний между съемочными точками нитяным дальномером оптического теодолита или светодальномером электронного тахеометра. Высоты съемочных точек определяют методом тригонометрического нивелирования. Съемочным обоснованием тахеометрических съемок могут служить: трасса линейного сооружения, замкнутый полигон, сеть микротриангуляции и висячий ход. Выбор того или иного типа съемочного обоснования связан со стадией проектирования, рельефом местности, размерами и требуемым масштабом съемок. Ориентирование съемочного обоснования тахеометрических съемок и определение координат съемочных точек обычно осуществляют привязкой к трассе линейного сооружения либо к пунктам государственной геодезической сети. При съемках небольших площадей допускается ориентирование съемочного обоснования по магнитному азимуту с вычислением условных координат съемочных точек. Съемочные точки обоснования размещают, как правило, на возвышенных участках местности с хорошо обеспеченной видимостью. Съемочное обоснование в виде замкнутого полигона используют при съемках участков местности для проектирования объектов строительства, занимающих большие площади. При расположении снимаемого участка местности в стороне от трассы осуществляют привязку съемочного обоснования к трассе, либо к ближайшим пунктам государственной геодезической сети. Для съемки удаленных от основного съемочного обоснования подробностей ситуации и рельефа назначают диагональные или висячие теодолитные ходы, при этом последние могут размещаться как внутри полигона, так и вне его пределов. Увязку угловых измерений, длин линий и превышений осуществляют как для всего полигона в целом, так и для каждой его части в отдельности. Съемочное обоснование по типу микротриангуляции создают на местности, не удобной для измерения длин линий землемерной лентой или рулеткой, например, при пересеченном или горном рельефах. По форме треугольники сети должны приближаться по возможности к равносторонним с размещением их вершин на возвышенных точках местности для обеспечения прямой видимости соседних вершин и большего охвата снимаемой площади. Одну из сторон обоснования размещают на удобном для измерения длины участке местности и принимают в качестве базиса. Его промеряют дважды в прямом и обратном направлениях с относительной невязкой не более 1:2000 и в случае необходимости вводят поправки за угол наклона линии. Все углы измеряют полным приемом теодолита с последующим аналитическим вычислением остальных длин сторон и координат всех съемочных точек обоснования. При съемках относительно узких полос, вытянутых в поперечном направлении от трассы или от одной из сторон замкнутого полигона, в качестве съемочного обоснования тахеометрической съемки этого участка местности принимают висячий ход. За начало висячего хода удобно принимать одну из съемочных точек основного обоснования или трассы линейного сооружения. Привязку висячего хода к основному съемочному обоснованию и измерение его углов осуществляют полным приемом теодолита, а длины линий лентой или дальномером в прямом и обратном направлениях. Предельную ошибку измерений углов при создании съемочного обоснования тахеометрических съемок принимают: f=±1,5’ . Допустимая невязка в превышениях: ±50 . Допустимую невязку в определении расстояний принимают: ± . Закрепление точек съемочного обоснования первоначально осуществляют сторожками и точками, при этом в центр точки вбивают гвоздь, над которым центрируют теодолит с точностью ±0,5 см.  При создании съемочного обоснования по типу микротриангуляции закрепление съемочных точек целесообразно делать обрезками газовых труб (вехи вставляются в трубы). После создания на местности планово-высотного обоснования тахеометрической съемки приступают к съемке подробностей рельефа и ситуации местности. Съемку производят полярным способом со съемочных точек обоснования по реечным точкам, размещаемым в характерных местах рельефа и ситуации. Реечные точки не закрепляют, а рейки при этом ставят непосредственно на землю. Число реечных точек, снимаемых с каждой точки съемочного обоснования, зависит от рельефа местности, особенностей ситуации, видимости и масштаба съемки. Реечные точки выбирают таким образом, чтобы на топографическом плане можно было бы однозначно изобразить рельеф и ситуацию. При производстве тахеометрических съемок рейки в характерных точках местности устанавливают рабочие — реечники. Наиболее часто применяют способ обхода точек параллельными рядами. На каждой точке съемочного обоснования производят работы в такой последовательности: на съемочной точке устанавливают теодолит или тахеометр, для чего его центрируют, устанавливают с помощью подъемных винтов по уровню в рабочее положение и с помощью рейки или рулетки измеряют высоту прибора над съемочной точкой обоснования; прибор ориентируют, т. е. устанавливают ноль лимба по исходному направлению, для чего открепив закрепительный винт алидады, совмещают ноль лимба с нулевым штрихом алидады, или иначе, устанавливают отсчет по горизонтальному кругу теодолита 0°00' и закрепляют алидаду; открепив закрепительный винт лимба, наводят перекрестье нитей зрительной трубы на низ вехи, установленной на предыдущей съемочной точке обоснования, закрепляют лимб и открепляют алидаду. Ориентирование осуществляют при основном положении круга теодолита; наведение прибора на реечные точки осуществляют при основном положении круга теодолита, при этом: измеряют расстояние нитяным дальномером, наводят горизонтальный штрих сетки нитей на определенный отсчет (на высоту наводки), измеряют угол наклона по вертикальному кругу, по лимбу горизонтального круга считывают горизонтальный угол, т. е. определяют направление на точку и записывают в графу «Примечания» семантическую информацию (угол дома, опора ЛЭП, урез воды и т.д.). При определении расстояния нитяным дальномером отсчеты по дальномерным нитям можно брать одним из следующих способов: с одновременным измерением угла наклона ν, когда средний штрих сетки нитей наведен на отсчет, равный высоте прибора, берут отсчеты по верхнему а и нижнему b штрихам нитяного дальномера; со смещением нижнего штриха дальномера на ближайший отсчет, кратный целому метру, при этом для взятия отсчета по вертикальному кругу теодолита средний штрих сетки нитей возвращают в исходное положение. обоих случаях расстояния находят путем вычитания из большего отсчета меньшего, с последующим умножением полученного результата на коэффициент дальномера С: L = (а - b) С. Второй способ определения дальномерного расстояния во всех случаях является более предпочтительным, поскольку требуется взятие только одного отсчета по верхнему штриху нитяного дальномера, нижний отсчет, равный кратному значению метра, отбрасывается и, таким образом, исключается арифметическая операция определения разности отсчетов, что очень важно для ускорения съемочного процесса. При определении угла наклона v средний штрих сетки нитей обычно наводят на отсчет по рейке, равный высоте прибора. Завершив съемку с данной съемочной точки, перед тем как перейти на следующую съемочную точку обоснования, вновь визируют прибор на исходную веху, проверяя, не сошел ли в ходе съемки отсчет по лимбу с 0°00'.

В ходе съемки характерных точек местности ведут абрис с нанесением на него всех реечных точек и с зарисовкой рельефа и ситуации. Абрис делают в журнале тахеометрической съемки отдельно для каждой съемочной точки, причем направления и расстояния наносят «на глаз» без масштаба. Абрис является важным элементом тахеометрической съемки, поскольку позволяет воспроизводить при камеральной подготовке топографического плана рельеф и ситуацию местности. В связи с этим кроме съемочных и реечных точек абрис обязательно включает в себя изображение ситуации местности и основные формы рельефа в условных горизонталях с указанием направлений склонов стрелками. В отличие от абрисов, ведущихся при теодолитной съемке, при тахеометрической съемке на абрисе никаких размеров не указывают, но обязательно проставляют номера съемочных и реечных точек. Результаты всех измерений по определению планово-высотного положения съемочных точек заносят в специальный полевой журнал — журнал тахеометрической съемки. При заполнении тахеометрического журнала нумерацию съемочных точек обоснования принимают римскими цифрами. Реечные точки обозначают арабскими цифрами, причем как в журнале, так и на абрисе съемочные и реечные точки обозначают одинаковыми номерами, что дает возможность ограничиваться в абрисе только нумерацией и расположением точек, без каких-либо цифровых характеристик. Нумерацию реечных точек при общем их числе менее 1000 принимают сквозной для всей съемки, во избежание путаницы при камеральной обработке. При общем числе точек более 1000 каждую последующую тысячу нумеруют снова начиная с единицы. Запись измерений на каждой съемочной точке обоснования ведут в следующем порядке: в заголовке листа записывают: номер съемочной точки, с которой осуществляется съемка подробностей; коэффициент дальномера; высоту прибора; направление ориентирования; значение места нуля (МО), определяемое в начале каждого рабочего дня; высоту съемочной точки; после наведения на рейку записывают дальномерное расстояние; высоту наводки; отпустив реечника на следующую точку, записывают отсчет по вертикальному кругу; записывают отсчет по лимбу горизонтального круга; наносят реечную точку на абрис или записывают ее семантическую характеристику в графу «Примечания» журнала тахеометрической съемки.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-02; просмотров: 688; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.86.138 (0.013 с.)