Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Асинхронный и синхронный режим обмена информацией.↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Поиск на нашем сайте
Известные в настоящее время интерфейсы периферийных устройств с последовательной передачей информации могут работать как в асинхронном, так и в синхронном режимах. В синхронном режиме параллельно с передачей по линии данных последовательности информационных битов по линии синхросигналов передается последовательность синхроимпульсов, что позволяет, как правило, повысить скорость передачи и решить проблемы побитной синхронизации передатчика и приемника при передаче длинных информационных сообщений. В асинхронном режиме побитная синхронизация приемника и передатчика осуществляется обычно по первому (стартовому) биту и затем поддерживается абонентами в течение времени передачи кадра стабильностью тактовых частот генераторов передатчика и приемника, частоты которых равны и, как правило, минимум в 16 раз превышают частоту передачи данных. С учетом этих обстоятельств, скорость передачи в асинхронном режиме ниже и число бит в информационной посылке (кадре) меньше. Покадровая синхронизация в асинхронном режиме осуществляется обрамлением информации при передаче по линии стартовым и стоповым битами. Покадровая синхронизация в синхронном режиме осуществляется использованием специальных кодовых последовательностей (флагов или специальных знаков) в общем случае в начале и конце кадра. Поскольку в синхронном режиме информационные биты сообщения передаются непрерывным потоком, то для кодирования! декодирования кадров используют специальные договоренности по форматам кадров (протоколам обмена). В случаях синхронного режима передачи данных протоколы обмена используют один из возможных общепринятых кадров: * кадр бит-ориентированного протокола типа HDLC (протокол высокоуровневого управления каналом передачи данных); * кадр бит-ориентированного протокола типа SDLC (протоко; синхронного управления звеном данных); * кадр байт-ориентированного протокола типа Monosync; * кадр байт-ориентированного протокола типа Bisync. Форматы кадров, используемых при синхронном режиме передачи данных. 61) Последовательный интерфейс RS-232C. синхронной и асинхронной передачи данных пока остается наиболее распространенным интерфейсом периферийного оборудования компьютеров. Но на смену ему все активнее внедряется интерфейс USB. Интерфейс RS-232C, определенный стандартом Ассоциации электронной промышленности (EIA) и рекомендациями V.24 ССГТТ, подразумевает наличие оборудования двух видов: терминального (DTE) и связного (ОСЕ). В качестве терминального оборудования может быть использован персональный компьютер, способный производить прием или передачу данных по последовательному интерфейсу. Под связным оборудованием понимаются устройства, которые могут упростить последовательную передачу данных совместно с терминальным оборудованием. Наглядным примером связного оборудования служит модем. В настоящее время интерфейс используется в самых различных устройствах, в том числе для обеспечения коммуникаций между компьютером и встраиваемой МП-системой управления. Обмен данными производится по двум линиям: линия RxD используется для приема данных, линия TxD — для передачи данных. Линия передачи одного устройства соединяется с линией приема другого, и наоборот (полный дуплекс). Для управления соединенными устройствами используется программное подтверждение (введение в поток передаваемых данных соответствующих управляющих символов). Возможна организация аппаратного подтверждения путем организации дополнительных линий RS-232 для обеспечения функций определения статуса и управления. Сигналы интерфейса RS-232C делят на следующие классы: * Последовательные данные (например, TxD, RxD). Интерфейс RS-232C обеспечивает два независимых последовательных канала данных: первичный (главный) и вторичный (вспомогательный). Оба канала могут работать в дуплексном режиме, т.е. одновременно осуществлять передачу и прием информации. * Управляющие сигналы квитирования (например, RTS, CTS). Сигналы квитирования — это средство, с помощью которого обмен сигналами позволяет DTE начать диалог с DCE до фактических передачи или приема данных по последовательным линиям связи. * Сигналы синхронизации (например, ТС, RC). В синхронном режиме (в отличие от более распространенного асинхронного) между устройствами необходимо передавать сигналы синхронизации, которые осуществляют тактирование принимаемого сигнала в целях его декодирования.
|
||||
Последнее изменение этой страницы: 2017-02-09; просмотров: 366; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.147.12 (0.005 с.) |