Эволюционное развитие формы тела растений. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эволюционное развитие формы тела растений.



Гипотезы о происхождении стеблей (осей) и листьев высших растений.

Теломная теория

Время: с 30-х годов XX столетия. Основатель: В. Циммерман.

Согласно этой теории, все органы высших растений происходят и независимо развиваются из теломов; высшие растения с настоящими корнями и побегами происходят от риниофитов, тело которых было представлено системой дихотомически ветвящихся простых цилиндрических осевых органов — теломов и мезомов. В ходе эволюции в результате перевершинивания, уплощения, срастания и редукции теломов возникли все органы покрытосеменных растений. Листья семенных растений возникли из уплощённых и сросшихся между собой систем теломов; стебли — благодаря боковому срастанию теломов; корни — из систем подземных теломов. Основные части цветка — тычинки и пестики — возникли из спороносных теломов и эволюционировали независимо от вегетативных листьев.

О происхождении листьев существуют различные гипотезы.

В последнее время наибольшим вероятием пользуется теория, основанная на изучении

строения первичных сухопутных растений - псилофитов, живших в силурийском и

девонском периодах геологической истории Земли.

Впервые они (роды риния, хорнеофитон, астероксилон) были описаны в 1917 г. В

настоящее время известно более 20 родов псилофитов, найденных в отложениях различных континентов. У этих растений не было ни корней, ни

листьев, и все вегетативное тело их состояло из подземной горизонтальной оси, напоминавшей корневище, и отходящих от нее надземных, дихотомически

разветвленных небольших цилиндрических осевых органов, подобных безлистному

стеблю и названных теломами. Концы некоторых разветвлений теломов заканчивались

спорангиями. У некоторых псилофитов (астероксилон) теломы были обильно

покрыты мелкими щетиновидными или чешуйчатыми выростами. В дальнейшем эволюция этих растений пошла в разных направлениях. У одних маленькие выросты на теломах увеличились в размерах и приняли более или менее плоскую форму, более удобную для фотосинтеза. В них развился проводящий пучок, соединенный с проводящей тканью осевого органа. Это направление эволюции привело к мелколистным высшим споровым растениям - плауновидным и хвощевидным, листья которых, следовательно, развились из мелких выростов на осевых органах, так называемых энациев.

Вторая линия эволюции, приведшая к крупным листьям (как, например, у

папоротников), была совершенно иная. Здесь листья возникли из нескольких осевых

дихотомических ветвей - теломов - путем перемещения их в одну плоскость, уплощения

(изменения радиального строения в дорзовентральное), сращения боковыми частями,

утраты способности к неограниченному росту в длину. Листья этого типа по своей

морфологической природе подобны кладодиям, имеют кладодификационное происхождение.

 

Определение и функция цветка. План строения цветка.

Цветок – особый побег покрытосеменных растений, ответственный за формирование спор двух типов (микро- и мегаспор), развитие мужского и женского гаметофитов, образование гамет (яйцеклеток и спермиев), опыление, оплодотворение и формирование семян. Цветок в процессе своего развития превращается в плод с семенами. Во мно­гих отношениях он уникален и столь ха­рактерен для этой группы, что покрыто­семенные нередко называют цветковыми растениями. Исключительная роль цветка как особой морфологической структуры связана с тем, что в нем полностью сов­мещены все процессы бесполого и поло­вого размножения. В цветках осуществляются микро- и мегаспорогенез, развитие гаметофитов, микро- и мегагаметогенез, опыление, оплодотворение и формирование зародышей нового поколения спорофитов. Завершается онтогенез цветка образова­нием плода с семенами. Особенности строения цветка обеспечивают осущест­вление всех этих функций с наименьшими затратами пластических веществ и энер­гии.

 

Цветок возникает из конуса нараста­ния цветочного побега. Листочкиоколо­цветника, тычинки и пестики последова­тельно образуются в виде бугорков из верхушечной меристемы. Первоначально процессы формирования и развития цве­точных структур осуществляются в цве­точной почке. Цветочная почка обычно состоит из почечного покрова (перулы), образованного почечными чешуями – видоизмененными листьями, которые плотно окружают молодой цветок (бутон). Иногда покров отсутствует, тогда бу­тон защищают молодые листья, плотно облегающие отдельные цветки или целые соцветия.

 

Растений.

Семя – особая структура семенных растений (голосеменных и покрытосеменных), развивающаяся из семязачатка после процесса двойного оплодотворения, реже без оплодотворения (апомиксис), обеспечивающая расселение потомства. При формировании семя заключено в перикарпий и является частью плода. В отличие от спо­ры, обеспечивающей расселение споровых растений, семя обладает ря­дом преимуществ, возникших в результа­те прогрессивной эволюции. Семя представляет собой многоклеточ­ную структуру, объединяющую зачаточное растение (зародыш), запасаю­щую ткань и защитный по­кров. Этим семя существенно отличается от споры, где вещества, необходимые для разви­тия будущего растения-гаметофита, со­держатся в единственной микроскопической клетке. Физиоло­гически спора и семя также существенно различаются. Спора прорастает немедленно при поступлении в клетку влаги. Многие семена имеют различной длительности период покоя, в течение которого они не способны к активной жизнеде­ятельности и образованию проростка. Иными слова­ми, семена как единицы расселения расте­ний во всех отношениях значительно бо­лее надежны и универсальны, чем споры. Образование из семязачатка семени начинается с того, что зигота, располагающаяся в семяза­чатке, вытягивается в длину и делится поперек перегородкой. Одна из клеток образует так называемый подвесок,или суспензор,другая – собственно зародыш.Подвесок содействует питанию зароды­ша, погружая его в эндосперм, а нередко приобретает свойства гаустории – присо­ски. Вторая клетка многократно митотически делится и в конечном итоге обра­зует сформировавшийся зародыш. Начало эндосперму дает триплоидное ядро, образовавшееся в результате слия­ния диплоидного вторичного ядра зародышевого мешка и одного из спермиев. Деление этого ядра дает всю массу питательной ткани – эндосперма.Степень развития эндосперма у разных таксонов неодинакова. Как правило, чем прими­тивнее в эволюционном отношении си­стематическая группа, тем лучше развит у нее эндосперм. Редукция эндосперма обычно связана с увеличением относи­тельных размеров зародыша. С увеличе­нием его размеров запасные вещества обычно накапливаются в самом зароды­ше. В процессе развития женского гаметофита, а затем зародыша и эндосперма мегаспорангий (нуцеллус семязачат­ка), обычно разрушается, а его запасные вещества используются. Однако у неко­торых групп покрытосеменных эта ткань частично со­храняется, превращаясь в диплоидную запасающую ткань, физиологически аналогичную эн­досперму. Эта ткань носит название перисперма(от греческого «пери» – около, возле) и отмечена для семян представителей семейств перцевых, гвоздичных.

Зрелые семена различаются по форме, величине, структуре поверхности, окра­ске и по внутреннему строению. Очень разнообразна форма семян – шаровидная, дисковидная, эллипсоидная, линейная. Обычно семена невелики по размерам, лишь из­редка достигая в длину немногих сантиметров. Очень мелкие семена, почти не­различимые простым глазом, свой­ственны видам семейства орхид­ных и многим паразитическим растениям. Крупные семена встречаются у многих бобовых, конского каштана, некоторых тыквенных и ряда пальм. Семена тропи­ческого бобового моры маслоносной (Mo­ra oleifera) достигают 16 см в поперечни­ке, у сейшельской пальмы (Lodoicea maldivica) – 50 см в диаметре и весят до 20 кг.

Семена цератонии стручковой (Ceratonia siliqua) из семейства бобовых очень по­стоянны по массе и служили у ювелиров мерой веса (1 карат) для драгоценных камней. Поверхность семян может быть гладкой, блестящей, но часто бывает шероховатой, бороздчатой, ре­бристой, ямчатой, опушенной волос­ками. Различают семена и по окраске. Особенно разнообразны по окраске семена бобовых. Семена часто снабжены разного рода придатками (присемянниками), выростами (например, крыловидными), иногда пучками воло­сков. Обычно семена прикреплены в пло­де к фуникулусу, но изредка – непосред­ственно к плаценте. Общий план строе­ния семени определяется типом семяза­чатка, из которого оно возникло. Основные структурные части зрелого семени: семенная кожура, питательная (запасающая) ткань и зародыш (рис. 13.21).

Рис. 13.21. Семя фасоли (Phaseolus vulgaris). А общий вид; Б зародыш: 1 – след халазы, 2 – след микропиле, 3 рубчик, 4 семенной шов, 5 – семенная кожура, 6 – почечка, 7– семядоля.

 

Семенная кожура, или спермодерма, формируется главным образом за счет интегументов семязачатка, реже – за счет разрастания тканей халазы. У большин­ства растений семенная кожура плотно окружает семя и служит основным за­щитным покровом, препятствующим его иссушению и преж­девременному насыще­нию влагой. Структурные особенности семенной кожуры связаны со способами распространения и прорастания семян. Они имеют большое значение для систе­матики. У семян, развивающихся во вскрывающихся плодах, в семенной ко­журе часто образуется защитный слой из склерифицированных клеток. Иногда на­ружный слой кожуры становится мя­систым и сочным,что при­влекает птиц и млекопитающих и способ­ствует распространению семян. На поверхности семени заметен рубчик – след, остающийся на месте прикрепления семязачатка к фуникулюсу и внутренней поверхности завязи. Морфологические особенности руб­чика – форма, размеры, окраска имеют большое значение в систематике растений, а также широко используются в семеноведении при характеристике и определении семян.

Многим семенам цветковых растений свойственно особое образование, имею­щее вид мясистых наростов, пленок или бахромы. Оно развивается в различных частях семени и получило название присемянника, или ариллуса(от латинского «арил­лус» – сушеный виноград). Природа присемянника различна. Иногда он возни­кает в результате разрастания тканей фуникулуса, обрастает семя частично или полностью, плотно прилегая к семенной кожуре, но не срастается с нею.

В иных случаях ариллус – производное наружно­го интегумента семязачатка. Присемянники, располагающиеся близ микропилярного следа семени, известны под названием карункулы.Присемянники большей частью ярко окрашены, играют важную роль в распространении семян и тем самым – в расселении растений. Канал, или углубление в семенной ко­журе, являющееся остатком микропиле семязачатка, называется микропилярным следом.Остаток халазы на противопо­ложном конце семени именуется халазальным следом. Через микропилярный след при прорастании семени выходит корешок. Помимо рубчика, микропилярного и халазального следов на семенной кожуре обычно можно заметить особое утолщение, называемое ребром семени или его швом.Шов возникает в той части фуникулуса, которая у неко­торых типов семязачатков сливается с интегументом.

Питательной тканью в семенах может быть эндосперм и перисперм. У 85% видов в се­менах встречается эндосперм (семена с эндоспермом), реже – перис­перм (семена с периспермом), еще реже – обе питательные ткани одновременно (семена с эндоспермом и периспермом). У некоторых таксонов специальные питательные ткани пол­ностью отсутствуют и тогда запасные ве­щества откладываются непосредственно в зародыше (семена без эндосперма). Консистенция питательной ткани раз­лична: твердая, жидкая, слизистая. Твердый, но снабженный глубокими складками и бороздами эндосперм назы­вается руминированным. Чаще всего в питательной ткани накапливаются угле­воды в виде зерен вторичного крахмала, реже липиды в виде капелек жирного масла. В семенах всегда имеются также белки, что особенно важно при прорастании, и фосфорное со­единение фитин, которому приписывают роль стимулятора в метаболических (об­менных) процессах при прорастании.. В зависимости от химического состава преобладающих запасных веществ семена разделяют на крахмалистые (пшеница, кукуруза, рис и другие злаки), масличные (подсолнечник, лен, арахис, соя) и белковые (бобовые). Выделяют несколько типов семян (рис. 13.22).

Рис. 13.22. Типы семян. А – с эндоспермом, окружающим зародыш (мак Papaver somniferum, Б с эндоспермом, примыкающим к зародышу (пшеница Triticum aestivum); В с запасными веществами, отложенными в семядолях зародыша (горох Pisum sativum); Г с эндоспермом, окружающим зародыш, и мощным периспермом (перец Piper nigrum); Д– с периспермом (куколь Agrostemma githago): 1 семенная кожура, 2 эндосперм, 3 – корешок, 4 стебелек, 5 почечка, 6 семядоли, 7 – околоплодник, 8 перисперм.

Зародыш (эмбрио) обычно образуется из оплодотворенной яйцеклетки и представляет собой зачаточный спорофит. Процесс формирования за­родыша (эмбриогенез) подраз­деляется на несколько периодов. Семена большинства растений заключают один зародыш. Он чаще всего бесцветен, реже окрашен и тогда содержит хлорофилл. Степень морфо­логической расчлененности зародыша различна у разных системати­ческих групп. Зародыш в значительной мере состав­лен из меристемы. Для наиболее примитивных так­сонов характерен так называемый недо­развитый зародыш. Он очень мелкий, то­чечный и формируется при прорастании семени. У эволюционно продвинутых групп зародыш хорошо развит, в его частях могут откладываться питательные вещества, а специальные пи­тательные ткани (эндосперм и перисперм) при этом редуцируются или полностью исчезают. В то же время ряд высокоорганизованных семейств, например, орхидные, имеют зародыши, состоящие из небольшой группы недифферен­цированных клеток. У большинства цветковых рас­тений ось зародыша состоит из зароды­шевых корешка и стебелька. У голосеменных и цветковых двудольных растений к верхней части стебелька прикрепляются семядоли – первые листья зародыша. Часть стебелька, располагающаяся ниже семядолей, называется гипокотилем, вы­ше – эпикотилем. Верхушка стебелька за­вершается почечкой.

В семени растений корешок всегда направлен к следу микропиле. Из него образуется главный корень нового спорофита. У части семян гипокотиль и эпикотиль при про­растании способны удлиняться и выно­сить семядоли на поверхность (надземное прорастание семян). У двудольных семядолей обычно две, очень редко три или четыре, у однодольных только одна, у голосе­менных их чаще всего несколько (от 2 до 15). Семядоли – первые листья зародыша. Считается, что в процессе эволюции цветковых односемя­дольный зародыш произошел от двусемя­дольного. При надземном прорастании семядоли зеленеют и способны к фото­синтезу, а при подземном – служат хранилищем питательных веществ (например у лещины, дуба) или выполняют функцию гаусто­рии (структуры, поглощающей питательные вещества). В семенах с эндоспермом они по­дают питательные вещества в надземную часть проростка. Почечка представляет собой зачаток главного побега растения.

Рост семени заканчивается не­задолго до завершения его полного фи­зиологического развития. Несколько по­зднее прекращается приток питательных веществ и снижается активность расти­тельных гормонов (фитогормонов). По мере того, как снижается активность гормонов и ферментов, до минимума падает влажность семян (5-10 %). По­кровы семени претерпевают суще­ственные изменения: их ткани частично отмирают, уплотняются и нередко одре­весневают. Такие зрелые семена спо­собны переносить неблагоприятные усло­вия среды и могут длительно сохранять (иногда до нескольких десятков лет) спо­собность прорастать и давать жизнь но­вому растению. Состояние, в котором на­ходятся такие зрелые семена, получило название физиологического покоя семян.В этом состоянии происходят метаболи­ческие процессы, дыхание, иногда «дозре­вание» зародыша, но способность к набу­ханию при поступлении влаги и прора­станию часто заторможена. Степень глубины физиологического покоя и его длительность неодинаковы. Семена выводятся из состояния покоя различным образом. Часть семян, осо­бенно однолетних растений, легко набу­хает и прорастает уже под влиянием увлажнения (часто при этом требуется хотя бы кратковременное охлаждение). Для прорастания других семян и нор­мального развития проростка обязатель­на холодная стратификация,то есть дли­тельное выдерживание их при понижен­ной температуре, во влажной среде и в условиях хорошей аэрации. Наконец, существует еще одна группа так назы­ваемых «твердосемянных» семян (у бобовых), семенная кожура которых в силу ее структурных особенностей водонепроницаема. Такие семена прорастают только после скари­фикации искусственного нарушения це­лостности кожуры с помощью надцарапывания, перетирания с песком, ошпа­ривания кипятком. В природе такие семена набухают и прорастают обычно под влиянием резкой смены темпера­турных режимов, способствующих нару­шению целостности кожуры.

Прорастанием семянназывают их переход от состояния покоя к вегетатив­ному росту зародыша и формирующего­ся из него проростка. Прорастание на­чинается при оптимальном для каждого вида сочетании влажности и температуры среды, при свободном доступе кислоро­да. Прорастание семян сопровождается сложными биохимическими и анатомо-физиологическими процессами. При по­ступлении воды в семенах резко усили­вается процесс дыхания, активизируются ферменты, запасные вещества переходят в легкоусвояемую, подвижную форму, образуются полирибосомы, и начинается синтез белка и других веществ. Рост за­родыша обычно начинается с прорыва покровов удлиняющимся зародышевым корнем и гипокотилем в области микропилярного следа. После появления корня почечка развивается в побег, на котором развертываются настоящие листья. Иногда семядоли выносятся гипоко­тилем над поверхностью земли, зеленеют и выполняют функцию фотосинтезирующих органов проростка (надземное прора­стание). В иных случаях они не освобо­ждаются от покровов семени, остаются в земле и служат источником питания развивающегося проростка (подземноепрорастание).В практике сельского хозяйства про­растание семян характеризуется всхо­жестью,то есть процентом семян, давших нормальные проростки в оптимальных для них условиях за определенный срок. Для сельскохозяйственных полевых культур этот срок равен 6-10 суткам, для древесных – 10-60.

 

 

37. Общая характеристика водорослей. Типы талломов водорослей.

 

38. Цианобактерии (цианеи, сине-зеленые водоросли). Строение клетки, талломов, систематическое деление на классы. Размножение цианей. Распространение и экология. Значение цианей в природе и хозяйственной деятельности.

 

39. Желто-зеленые водоросли. Строение клетки, талломов, систематическое деление на классы. Размножение, распространение и экология. Значение их в природе и хозяйственной деятельности.

40. Зеленые водоросли. Классы, порядки, представители. Строение клетки, талломов, систематическое деление на классы. Размножение, распространение и экология. Значение их в природе и хозяйственной деятельности.

41. Диатомовые водоросли. Строение клетки, талломов, систематическое деление на классы. Размножение, распространение и экология. Значение их в природе и хозяйственной деятельности.

42. Бурые водоросли. Строение клетки, талломов, систематическое деление на классы. Размножение, распространение и экология. Значение их в природе и хозяйственной деятельности.

43. Красные водоросли. Строение клетки, талломов, систематическое деление на классы. Размножение, распространение и экология. Значение их в природе и хозяйственной деятельности.

44. Общая характеристика грибов и грибоподобных организмов. Аскомицеты. Базидиомицеты. Дейтеромицеты. Строение мицелия.

 

 

Эволюционное развитие формы тела растений.

Развитие растительного мира совершалось в 2 этапа и связано с появлением низших и высших растений. По новой систематике к низшим относят водоросли (а раньше относили бактерии, грибы и лишайники. Теперь они выделены в самостоятельные царства), а к высшим - мхи, папоротникообразные, голосеменные и покрытосеменные.

В эволюции низших организмов выделяются 2 периода, существенно различающиеся между собой организацией клетки. В течении 1 периода господствовали организмы, сходные с бактериями и сине-зеленые водорослями. Клетки этих жизненных форм не имели типичных органоидов (митохондирий, хлоропластов, аппарата Гольджи и др.).Ядро клетки не было ограничено ядерной мембраной (это прокариотический тип клеточной организации). 2 период был связан с переходом низших растений (водорослей) к автотрофному типу питания и с образованием клетки со всеми типичными органоидами (это эукариотический тип клеточной организации, который сохранился и на последующих ступенях развития растительного и животного мира). Этот период можно назвать периодом господства зеленых водорослей, одноклеточных, колониальных и многоклеточных. Простейшими из многоклеточных являются нитчатые водоросли (улотрикс), которые не имеют никакого ветвления своего тела. Их тело представляет собой длинную цепочку, состоящую из отдельных клеток. Другие же многоклеточные водоросли расчленены большим количеством выростов, поэтому их тело ветвится (у хары, у фукуса).

Многоклеточные водоросли в связи с их автотрофной (фотосинтетичесой) деятельностью развивались в направлении увеличения поверхности тела для лучшего поглощения питательных веществ из водной среды и солнечной энергии. У водорослей появилась более прогрессивная форма размножения - половое размножение, при котором начало новому поколению дает диплоидная (2н) зигота, сочетающая в себе наследственность 2-х родительских форм.

Многоклеточные водоросли явились источником 2-ого этапа эволюции растительног мира, на протяжении которого возникли высшие растения. Прежде чем проследить этот главный путь исторического развития растений, охарактеризуем 2 боковые эволюционные ветви, представленные грибами и лишайниками. Грибы и лишайники в связи с их узкой приспособленностью к условиям среды пока не дали начала каким-либо другим организмам. Грибы появились в результате утраты пигментов и перехода к гетеротрофному питанию готовыми органическими веществами. Но они сохранили много признаков водорослей: а) высокую потребность в воде; б) размножение зооспорами; в) характер полового размножения. Лишайники могли возникнуть только на основе объединения уже существовших организмов - водорослей и грибов. Это объединение, возможно, первоначально произшло или на основе паразитизма, или на основе симбиоза гриба и водоросли. Современные лишайники можно определить как целостные симбиотические организмы, характеризующиеся специфичиским способом питания, особым способом размножения, которые не свойственны ни одному из компонентов, входящих в состав их тела.

2 эволюционный этап развития растений необходимо связывать с постепенным переходом их от водного образа жизни к наземному. Первичным наземным организмами оказались псилофиты, которые сохранились в виде ископаемых остатков в силурийских и девонских отложениях. Строение этих растений более сложное по сравнению с водорослями: а) они имели специальные органы прикрепления к субстрату - ризоиды; б) стеблевидные органы с древесиной, окруженной лубом; в) зачатки проводящих тканей; г) эпидермис с устьицами.

Начиная с псилофитов, нужно проследить 2 линии эволюции высших растений, одна из которых представлена мохообразными, а вторая - папоротникообразными, голосеменными и покрытосеменными.

 

Главное, что характеризует мохообразные, это преобладание в цикле их индивидуального развития гаметофита над спорофитом. Гаметофит - это все зеленое растение, способное к самостоятельному питанию. Спорофит представлен коробочкой (кукушкин лен) и полностью зависит в своем питании от гаметофита. Доминирование у мхов влаголюбивого гаметофита в условиях воздушно-наземного образа жизни оказалось нецелеособразным, поэтому мхи стали особой ветвью эволюции высших растений и пока не дали после себя совершенных групп растений. Этому способствовал и тот факт, что гаметофит по сравнению со спорофитом имел обеденную наследственность (гаплоидный (1н) набор хромосом). Эта линия в эволюции высших растений называется гаметофитной.

Вторая линия эволюции на пути от псилофитов к покрытосеменным является спорофитной, потому что у папоротникообразных, голосеменных и покрытосеменных в цикле индивидуального развития растений доминирует спорофит. Он представляет собой растение с корнем, стеблем, листьями, органами спороношения (у папоротников) или плодоношения (у покрытосеменных). Клетки спорофита имеют диплоидный набор хромосом, т.к. они развиваются из диплоидной зиготы. Гаметофит сильно редуцирован и приспособлен только для образования мужских и женских половых клеток. У цветковых растений женский гаметофит представлен зародышевым мешком, в котором находится яйцеклетка. Мужской гаметофит образуется при проростании пыльцы. Он состоит из одной вегетативной и одной генеративной клеток. При прорастании пыльцы из генеративной клетки возникает 2 спермия. Эти 2 мужские половые клетки участвуют в двойном оплодотворении у покрытосеменных. Оплодотворенная яйцеклетка дает начало новому поколению растения - спорофиту. Прогресс покрытосеменных обусловлен совершенствованием функции размножения.

Группы растений. Признаки усложнения организации растений (ароморфозы)

1. Водоросли. Появление хлорофилла, возникновения фотосинтеза, многоклеточности.

2. Псилофиты как переходная форма. Специальные органы прикрепления к субстрату - ризоиды; стеблевые органы с зачатками проводящих тканей; эпидермис с устьицами.

3. Мхи. Появление листьев и стебля, тканей, обеспечивающих возможность жизни в наземной среде.

4. Папоротникообразные. Появление настоящих корней, а в стебле - тканей, обеспечивающих проведение воды, всасываемой корнями из почвы.

5. Голосеменные. Появление семени внутренние оплодотворение, развитие зародыша внутри семязачатка.

6. Покрытосеменные. Возникновение цветка, развитие семян внутри плода. Разнообразие корней, стеблей, листьев по строению и выполняемым функциям. Развитие проводящей системы, обеспечивающей быстрое передвижение веществ в растении.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 2842; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.234.83 (0.047 с.)