Спектр электромагнитных колебаний, особенности получения изображения в отдельных его диапазонах. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Спектр электромагнитных колебаний, особенности получения изображения в отдельных его диапазонах.



Спектр электромагнитных колебаний, особенности получения изображения в отдельных его диапазонах.

Последовательность электромагнитных волн, классифицированная по их длинам (или частотам), называется спектром электромагнитных волн. Большинство современных аэрокосмических методов основано на использовании оптических и ультракоротких радиоволн с длиной от 0,3 мкм до 3 м. Участок оптических волн (0,001 — 1000 мкм) включает ультрафиолетовый (0,001 — 0,4 мкм), видимый (0,4—0,8 мкм) и инфракрасный (0,8—1000 мкм) диапазоны. Видимый диапазон, в котором глаз способен выделять цветовые различия, делят на семь цветовых зон со следующими названиями цветов и границами, нм: фиолетовый (380—450), синий (450—480), голубой (480 —500), зеленый (500 — 560), желтый (560 — 590), оранжевый (590 —620) и красный (620—750). Диапазон инфракрасного (ИК) излучения разделяют на поддиапазоны, мкм: ближний (0,8—1,3), средний (1,3 —3) и дальний (3—1000). В ближнем и среднем поддиапазонах преобладает отраженное (солнечное) излучение, а в дальнем, называемом тепловым, собственное излучение Земли. Волны длиной 0,1 — 1 мм часто называют субмиллиметровыми.

Часть спектра, охватывающую ультракороткие радиоволны (1 —10 000 мм), разбивают на диапазоны миллиметровых, сантиметровых, дециметровых и метровых радиоволн. Сантиметровые и дециметровые волны часто объединяют в диапазон радиоволн сверхвысоких частот (СВЧ), в котором выделяют участки, обозначаемые латинскими буквами К, X, С, S, L, Р. Именно в этих участках работает различная радиоэлектронная аппаратура спутников, но каждая на строго фиксированных международными соглашениями длинах волн (или частот). Например, передачу видеоинформации со спутников на наземные пункты приема наиболее часто производят по радиоканалам в так называемых Х- и S-диапазонах на длинах волн соответственно 3 и 11 см, а ^-диапазон (длина волны 22 см) отведен для глобальных систем спутникового позиционирования — отечественной ГЛОНАСС (Глобальная навигационная спутниковая система) и американской GPS (Global Positioning System). Нередко миллиметровые, сантиметровые и дециметровые радиоволны собственного излучения Земли относят к одному диапазону, называемому микроволновым. Надо учитывать, что приведенная классификация и названия отдельных участков электромагнитного спектра носят условный характер и неодинаковы у различных авторов.

Виды и технологии съемок.

Аэрокосмические съемки принято делить на ряд классов и видов в зависимости от назначения, используемых носителей, съемочной аппаратуры, технологии выполнения съемки, формы представления результатов.

1.Аэросъемка

Существуют несколько разновидностей съемок с самолета: аэрофотографическая, тепловая инфракрасная, радиолокационная и др. Кроме того, традиционные аэрометоды включают ряд так называемых геофизических съемок — аэромагнитную, аэрорадиометрическую, аэроспектрометрическую, в результате выполнения которых получают не снимки, а цифровую информацию об исследуемых объектах.

Из всех съемок наиболее распространенной является аэрофотографическая съемка. В зависимости от направления оптической оси аэрофотоаппарата различают плановую и перспективную аэрофотосъемку.

При плановой (вертикальной) аэрофотосъемке оптическую ось аэрофотоаппарата приводят в отвесное положение, при котором снимок горизонтален. Однако в процессе полета по прямолинейному маршруту аэросъемочный самолет периодически испытывает отклонения, которые характеризуют углами тангажа, крена исноса (рыскания). Из-за колебаний самолета аэрофотоаппарат также наклоняется и разворачивается. Принято к плановым относить снимки, имеющие угол наклона не более 3°.

При перспективной аэрофотосъемке оптическую ось аэрофотоаппарата устанавливают под определенным углом к вертикали. По сравнению с плановым перспективный снимок захватывает большую площадь, а изображение получается в более привычном для человека ракурсе.

По характеру покрытия местности снимками аэрофотосъемку делят на одномаршрутную и многомаршрутную.

Одномаршрутная аэрофотосъемка применяется при исследованиях речных долин, прибрежной полосы, при дорожных изысканиях и т.д. Выборочную маршрутную аэрофотосъемку характерных объектов географ может выполнять самостоятельно, сочетая ее с аэровизуальными наблюдениями. Для этих целей удобно использовать ручной аэрофотоаппарат или цифровую фотокамеру.

Наибольшее производственное применение, прежде всего для топографических съемок, получила многомаршрутная (площадная) аэрофотосъемка, при которой снимаемый участок сплошь покрывается серией параллельных прямолинейных аэросъемочных маршрутов, прокладываемых обычно с запада на восток.

2. Космическая съемка

Космическая съемка, т.е. съемка с высоты более 150 км, выполняется со спутника, который в соответствии с законами небесной механики перемещается по строго установленной орбите.

Поэтому возможности его маневрирования по сравнению с самолетом весьма ограничены. Любой спутник-съемщик всегда должен рассматриваться с учетом параметров его орбиты.

Орбиты спутников. С точки зрения космических съемок земной поверхности важны следующие параметры орбит: форма, наклонение, высота, положение ее плоскости по отношению к Солнцу.

Форма орбиты определяет постоянство высоты съемки на разных участках орбиты. Предпочтительны круговые орбиты, у которых высоты перигея и апогея одинаковы и, следовательно, одинакова высота съемки земной поверхности, а для одной и той же аппаратуры — одинаковы охват, масштаб и разрешение снимков.

Наклонение определяется углом / между плоскостью орбиты и

плоскостью экватора. По наклонению разделяют орбиты экваториальные (/ = 0°), полярные (/«90°) и наклонные. В число наклонных орбит входят прямые (0 < /' < 90°) и обратные (90° < i < 180°).

Высота орбиты. Спутники работают на различных высотах.

По мере увеличения высоты увеличивается время активного существования спутников, охват съемкой, но при этом обычно уменьшается разрешение снимков.

Выделяют три группы наиболее часто используемых для съемки

Земли орбит — с высотами 150 — 500, 500—2000 и 36 000 км. Первая группа включает орбиты пилотируемых кораблей, орбитальных станций, а также спутников фотосъемки с относительно коротким временем функционирования. Во вторую группу входят орбиты ресурсных и метеорологических спутников с электронной аппаратурой. Для первых характерны высоты около 600 и 900 км, для вторых — 900—1400 км. Третья группа — это орбиты геостационарных спутников; угловая скорость движения спутника на высоте 36 000 км равна угловой скорости вращения Земли, и поэтому спутник движется синхронно с подспутниковой точкой земной поверхности. Геостационарный спутник на экваториальной орбите, как бы зависая над определенным районом Земли, обеспечивает его постоянное наблюдение.

От периода обращения — времени оборота спутника вокруг Земли — зависит число витков в сутки и соответственно межвитковое расстояние.

Солнечно-синхронные орбиты — орбиты, при съемке с которых солнечная освещенность земной поверхности (высота Солнца) остается практически неизменной достаточно продолжительное время (почти в течение сезона). Это достигается следующим путем. Поскольку плоскость любой орбиты под влиянием несферичности Земли немного разворачивается (прецессирует), то оказывается возможным, подбирая определенное соотношение наклонения и высоты орбиты, добиться, чтобы величина прецессии была равной суточному повороту Земли вокруг Солнца, т. е. около 1° в сутки. Среди околоземных орбит удается создать лишь несколько солнечно-синхронных, наклонение которых всегда обратное. Например, при высоте орбиты 1000 км наклонение должно быть 99°.

Орбитальные съемки поверхности Земли. По сравнению с самолетом спутник движется значительно быстрее, что требует коротких выдержек при съемке. Однако летящий спутник не испытывает вибраций и резких колебаний, поэтому космические снимки удается получать с более высокой разрешающей способностью, чем аэроснимки.

По характеру покрытия земной поверхности космическими снимками можно выделить одиночное фотографирование, маршрутную, прицельную и глобальную съемку.

Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы. Для этого направление съемки отклоняется от надира на расчетный угол.

Глобальную съемку производят с геостационарных и полярно-орбитальных спутников.

Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

3.Технолигии получения снимков

По технологии съемки и с учетом используемого спектрального диапазона различают фотографическую (черно-белую, цветную, спектрозональную) и сканерную (оптико-механического и оптико-элекгронного сканирования) съемки в видимом и ближнем инфракрасном диапазоне, тепловую инфракрасную съемку, микроволновую радиометрическую и радиолокационную съемки. При наиболее распространенных пассивных съемках регистрируется естественное отраженное солнечное или собственное излучение Земли, а при активных — отраженное земной поверхностью искусственное излучение, посланное с носителя.

В современном аэрокосмическом зондировании многозональный принцип стал основным. Многозональная съемка обычно выполняется одновременно в 3 — 7 узких спектральных зонах видимого и инфракрасного диапазона и иногда сочетается со съемкой в панхроматической зоне для получения снимков наиболее высокого пространственного разрешения. Сканеры с ПЗС-матрицами позволяют увеличить число спектральных зон до нескольких сотен (гиперспектральная съемка). При радиолокационной съемке многозональный принцип реализуется использованием нескольких длин радиоволн (частот) СВЧ-диапазона (многочастотная съемка) и разнрй поляризации зондирующего излучения (поляризационная съемка).

Детальные стереоскопические снимки, получаемые с космических высот длиннофокусными оптико-электронными сканерами, оказались пригодными для метрической характеристики рельефа земной поверхности, представляемой в виде изолинейных карт или цифровых моделей рельефа. Выполняемая для этого стереоскопическая съемка имеет несколько вариантов: одновитковая (однопроходная) съемка, когда перекрывающиеся стереопары снимков получают при разных направлениях оптической оси (конвергентная съемка «вперед—назад»); двухвитковая стереосъемка с поперечным перекрытием снимков с соседних витков при отклонении оптической оси в сторону. К конвергентной съемке относится и так называемая многоракурсная (веерная) съемка, при которой многоугловой сканер ведет съемку вдоль маршрута «вперед—назад», получая одновременно несколько перспективных снимков с различными углами наклона. Так, на спутнике Terra установлен 9-угловой сканер MISR. Различие яркостей изображения на разных ракурсных снимках обусловлено анизотропией индикатрис отражения аэрозоля атмосферы, а также некоторых земных объектов.

Наземная стереофотограмметрическая (фототеодолитная) съемка применяется для изучения современных процессов рельефообразования и при крупномасштабном картографировании в высокогорных районах. Стереосъемка выполняется фототеодолитом, который представляет собою измерительную фотокамеру, оснащенную очень хорошим объективом.

Фототеодолитные снимки отличаются высоким фотографическим качеством, проработкой мельчайших деталей. При фототеодолитной съемке местности, например осыпного участка горной долины, на противоположном склоне выбирают две точки съемки, называемое фотостанцией (базисом).

Специальные съемки. При изучении динамичных объектов и явлений, например снежных лавин, обвалов, волнения водной поверхности и т.д., производят синхронную стереосъемку двумя камерами или фотокамерой с двумя объективами.

При изучении ограниченных участков морского дна выполняется подводная стереосъемка. Для этого малогабаритная спаренная стереокамера помещается в защитный бокс, снабженный осветителями, и спускается на тросе в глубину.

Стереоскопическое фотографирование. Географ в экспедициях всегда пользуется фотоаппаратом. Для фиксации пространственного облика изучаемой местности или отдельных объектов рекомендуется получать не одну, а две перекрывающиеся фотографии, т.е. выполнять стереоскопическое фотографирование, что можно с успехом сделать обычным или цифровым Фотоаппаратом.

Спектр электромагнитных колебаний, особенности получения изображения в отдельных его диапазонах.

Последовательность электромагнитных волн, классифицированная по их длинам (или частотам), называется спектром электромагнитных волн. Большинство современных аэрокосмических методов основано на использовании оптических и ультракоротких радиоволн с длиной от 0,3 мкм до 3 м. Участок оптических волн (0,001 — 1000 мкм) включает ультрафиолетовый (0,001 — 0,4 мкм), видимый (0,4—0,8 мкм) и инфракрасный (0,8—1000 мкм) диапазоны. Видимый диапазон, в котором глаз способен выделять цветовые различия, делят на семь цветовых зон со следующими названиями цветов и границами, нм: фиолетовый (380—450), синий (450—480), голубой (480 —500), зеленый (500 — 560), желтый (560 — 590), оранжевый (590 —620) и красный (620—750). Диапазон инфракрасного (ИК) излучения разделяют на поддиапазоны, мкм: ближний (0,8—1,3), средний (1,3 —3) и дальний (3—1000). В ближнем и среднем поддиапазонах преобладает отраженное (солнечное) излучение, а в дальнем, называемом тепловым, собственное излучение Земли. Волны длиной 0,1 — 1 мм часто называют субмиллиметровыми.

Часть спектра, охватывающую ультракороткие радиоволны (1 —10 000 мм), разбивают на диапазоны миллиметровых, сантиметровых, дециметровых и метровых радиоволн. Сантиметровые и дециметровые волны часто объединяют в диапазон радиоволн сверхвысоких частот (СВЧ), в котором выделяют участки, обозначаемые латинскими буквами К, X, С, S, L, Р. Именно в этих участках работает различная радиоэлектронная аппаратура спутников, но каждая на строго фиксированных международными соглашениями длинах волн (или частот). Например, передачу видеоинформации со спутников на наземные пункты приема наиболее часто производят по радиоканалам в так называемых Х- и S-диапазонах на длинах волн соответственно 3 и 11 см, а ^-диапазон (длина волны 22 см) отведен для глобальных систем спутникового позиционирования — отечественной ГЛОНАСС (Глобальная навигационная спутниковая система) и американской GPS (Global Positioning System). Нередко миллиметровые, сантиметровые и дециметровые радиоволны собственного излучения Земли относят к одному диапазону, называемому микроволновым. Надо учитывать, что приведенная классификация и названия отдельных участков электромагнитного спектра носят условный характер и неодинаковы у различных авторов.

Виды и технологии съемок.

Аэрокосмические съемки принято делить на ряд классов и видов в зависимости от назначения, используемых носителей, съемочной аппаратуры, технологии выполнения съемки, формы представления результатов.

1.Аэросъемка

Существуют несколько разновидностей съемок с самолета: аэрофотографическая, тепловая инфракрасная, радиолокационная и др. Кроме того, традиционные аэрометоды включают ряд так называемых геофизических съемок — аэромагнитную, аэрорадиометрическую, аэроспектрометрическую, в результате выполнения которых получают не снимки, а цифровую информацию об исследуемых объектах.

Из всех съемок наиболее распространенной является аэрофотографическая съемка. В зависимости от направления оптической оси аэрофотоаппарата различают плановую и перспективную аэрофотосъемку.

При плановой (вертикальной) аэрофотосъемке оптическую ось аэрофотоаппарата приводят в отвесное положение, при котором снимок горизонтален. Однако в процессе полета по прямолинейному маршруту аэросъемочный самолет периодически испытывает отклонения, которые характеризуют углами тангажа, крена исноса (рыскания). Из-за колебаний самолета аэрофотоаппарат также наклоняется и разворачивается. Принято к плановым относить снимки, имеющие угол наклона не более 3°.

При перспективной аэрофотосъемке оптическую ось аэрофотоаппарата устанавливают под определенным углом к вертикали. По сравнению с плановым перспективный снимок захватывает большую площадь, а изображение получается в более привычном для человека ракурсе.

По характеру покрытия местности снимками аэрофотосъемку делят на одномаршрутную и многомаршрутную.

Одномаршрутная аэрофотосъемка применяется при исследованиях речных долин, прибрежной полосы, при дорожных изысканиях и т.д. Выборочную маршрутную аэрофотосъемку характерных объектов географ может выполнять самостоятельно, сочетая ее с аэровизуальными наблюдениями. Для этих целей удобно использовать ручной аэрофотоаппарат или цифровую фотокамеру.

Наибольшее производственное применение, прежде всего для топографических съемок, получила многомаршрутная (площадная) аэрофотосъемка, при которой снимаемый участок сплошь покрывается серией параллельных прямолинейных аэросъемочных маршрутов, прокладываемых обычно с запада на восток.

2. Космическая съемка

Космическая съемка, т.е. съемка с высоты более 150 км, выполняется со спутника, который в соответствии с законами небесной механики перемещается по строго установленной орбите.

Поэтому возможности его маневрирования по сравнению с самолетом весьма ограничены. Любой спутник-съемщик всегда должен рассматриваться с учетом параметров его орбиты.

Орбиты спутников. С точки зрения космических съемок земной поверхности важны следующие параметры орбит: форма, наклонение, высота, положение ее плоскости по отношению к Солнцу.

Форма орбиты определяет постоянство высоты съемки на разных участках орбиты. Предпочтительны круговые орбиты, у которых высоты перигея и апогея одинаковы и, следовательно, одинакова высота съемки земной поверхности, а для одной и той же аппаратуры — одинаковы охват, масштаб и разрешение снимков.

Наклонение определяется углом / между плоскостью орбиты и

плоскостью экватора. По наклонению разделяют орбиты экваториальные (/ = 0°), полярные (/«90°) и наклонные. В число наклонных орбит входят прямые (0 < /' < 90°) и обратные (90° < i < 180°).

Высота орбиты. Спутники работают на различных высотах.

По мере увеличения высоты увеличивается время активного существования спутников, охват съемкой, но при этом обычно уменьшается разрешение снимков.

Выделяют три группы наиболее часто используемых для съемки

Земли орбит — с высотами 150 — 500, 500—2000 и 36 000 км. Первая группа включает орбиты пилотируемых кораблей, орбитальных станций, а также спутников фотосъемки с относительно коротким временем функционирования. Во вторую группу входят орбиты ресурсных и метеорологических спутников с электронной аппаратурой. Для первых характерны высоты около 600 и 900 км, для вторых — 900—1400 км. Третья группа — это орбиты геостационарных спутников; угловая скорость движения спутника на высоте 36 000 км равна угловой скорости вращения Земли, и поэтому спутник движется синхронно с подспутниковой точкой земной поверхности. Геостационарный спутник на экваториальной орбите, как бы зависая над определенным районом Земли, обеспечивает его постоянное наблюдение.

От периода обращения — времени оборота спутника вокруг Земли — зависит число витков в сутки и соответственно межвитковое расстояние.

Солнечно-синхронные орбиты — орбиты, при съемке с которых солнечная освещенность земной поверхности (высота Солнца) остается практически неизменной достаточно продолжительное время (почти в течение сезона). Это достигается следующим путем. Поскольку плоскость любой орбиты под влиянием несферичности Земли немного разворачивается (прецессирует), то оказывается возможным, подбирая определенное соотношение наклонения и высоты орбиты, добиться, чтобы величина прецессии была равной суточному повороту Земли вокруг Солнца, т. е. около 1° в сутки. Среди околоземных орбит удается создать лишь несколько солнечно-синхронных, наклонение которых всегда обратное. Например, при высоте орбиты 1000 км наклонение должно быть 99°.

Орбитальные съемки поверхности Земли. По сравнению с самолетом спутник движется значительно быстрее, что требует коротких выдержек при съемке. Однако летящий спутник не испытывает вибраций и резких колебаний, поэтому космические снимки удается получать с более высокой разрешающей способностью, чем аэроснимки.

По характеру покрытия земной поверхности космическими снимками можно выделить одиночное фотографирование, маршрутную, прицельную и глобальную съемку.

Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы. Для этого направление съемки отклоняется от надира на расчетный угол.

Глобальную съемку производят с геостационарных и полярно-орбитальных спутников.

Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

3.Технолигии получения снимков

По технологии съемки и с учетом используемого спектрального диапазона различают фотографическую (черно-белую, цветную, спектрозональную) и сканерную (оптико-механического и оптико-элекгронного сканирования) съемки в видимом и ближнем инфракрасном диапазоне, тепловую инфракрасную съемку, микроволновую радиометрическую и радиолокационную съемки. При наиболее распространенных пассивных съемках регистрируется естественное отраженное солнечное или собственное излучение Земли, а при активных — отраженное земной поверхностью искусственное излучение, посланное с носителя.

В современном аэрокосмическом зондировании многозональный принцип стал основным. Многозональная съемка обычно выполняется одновременно в 3 — 7 узких спектральных зонах видимого и инфракрасного диапазона и иногда сочетается со съемкой в панхроматической зоне для получения снимков наиболее высокого пространственного разрешения. Сканеры с ПЗС-матрицами позволяют увеличить число спектральных зон до нескольких сотен (гиперспектральная съемка). При радиолокационной съемке многозональный принцип реализуется использованием нескольких длин радиоволн (частот) СВЧ-диапазона (многочастотная съемка) и разнрй поляризации зондирующего излучения (поляризационная съемка).

Детальные стереоскопические снимки, получаемые с космических высот длиннофокусными оптико-электронными сканерами, оказались пригодными для метрической характеристики рельефа земной поверхности, представляемой в виде изолинейных карт или цифровых моделей рельефа. Выполняемая для этого стереоскопическая съемка имеет несколько вариантов: одновитковая (однопроходная) съемка, когда перекрывающиеся стереопары снимков получают при разных направлениях оптической оси (конвергентная съемка «вперед—назад»); двухвитковая стереосъемка с поперечным перекрытием снимков с соседних витков при отклонении оптической оси в сторону. К конвергентной съемке относится и так называемая многоракурсная (веерная) съемка, при которой многоугловой сканер ведет съемку вдоль маршрута «вперед—назад», получая одновременно несколько перспективных снимков с различными углами наклона. Так, на спутнике Terra установлен 9-угловой сканер MISR. Различие яркостей изображения на разных ракурсных снимках обусловлено анизотропией индикатрис отражения аэрозоля атмосферы, а также некоторых земных объектов.

Наземная стереофотограмметрическая (фототеодолитная) съемка применяется для изучения современных процессов рельефообразования и при крупномасштабном картографировании в высокогорных районах. Стереосъемка выполняется фототеодолитом, который представляет собою измерительную фотокамеру, оснащенную очень хорошим объективом.

Фототеодолитные снимки отличаются высоким фотографическим качеством, проработкой мельчайших деталей. При фототеодолитной съемке местности, например осыпного участка горной долины, на противоположном склоне выбирают две точки съемки, называемое фотостанцией (базисом).

Специальные съемки. При изучении динамичных объектов и явлений, например снежных лавин, обвалов, волнения водной поверхности и т.д., производят синхронную стереосъемку двумя камерами или фотокамерой с двумя объективами.

При изучении ограниченных участков морского дна выполняется подводная стереосъемка. Для этого малогабаритная спаренная стереокамера помещается в защитный бокс, снабженный осветителями, и спускается на тросе в глубину.

Стереоскопическое фотографирование. Географ в экспедициях всегда пользуется фотоаппаратом. Для фиксации пространственного облика изучаемой местности или отдельных объектов рекомендуется получать не одну, а две перекрывающиеся фотографии, т.е. выполнять стереоскопическое фотографирование, что можно с успехом сделать обычным или цифровым Фотоаппаратом.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 247; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.90.141 (0.038 с.)