Основы представления графических данных 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основы представления графических данных



Виды компьютерной графики

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычисли­тельных комплексов, — компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Виды компьютерной графики: полиграфия, 2D графика, 3D графика и анимация, САПР и деловая графика, Web дизайн, мультимедиа, видеомонтаж.

В зависимости от способа формирования изображений компьютерную 2D-графику принято подразделять на растровую, векторную и фрактальную.

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная гра­фика, научная графика, Web-графика, компью­терная полиграфия и прочие.

На стыке компьютерных, телевизионных и кино­технологий зародилась и стремительно развива­ется сравнительно новая область компьютерной графики и анимации.

Хотя компьютерная графика служит всего лишь инструментом, ее структура и методы основаны на передовых достижениях фундаментальных и прикладных наук: математики, физики, химии, биологии, статистики, программирования и мно­жества других. Это замечание справедливо как для программных, так и для аппаратных средств создания и обработки изображений на компью­тере. Поэтому компьютерная графика является одной из наиболее бурно развивающихся отрас­лей информатики и во многих случаях выступает «локомотивом», тянущим за собой всю компью­терную индустрию.

Растровая графика   Векторная графика
Трехмерная графика Инженерная графика

 

Растровая графика

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выра­жающее количество точек, приходящихся на еди­ницу длины. При этом следует различать:

• разрешение оригинала;

• разрешение экранного изображения;

• разрешение печатного изображения.

Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch — dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки или методу создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения. Для экранных копий изображения элемен­тарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных зна­чений), разрешения оригинала и масштаба отображения.

Мониторы для обработки изображений с диагональю 20-21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, 1600x1280, 1920x1200, 1920x1600 точек. Расстояние между соседними точками люминофора у качественного монитора состав­ляет 0,22-0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устрой­ства вывода. В случае, если твердая копия будет увеличена по сравнению с ориги­налом, эти величины следует умножить на коэффициент масштабирования.

Разрешение печатного изображения и понятие линиатуры. Размер точки растро­вого изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растри­ровании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch — Ipi) и называется линиатурой.

Размер точки растра рассчитывается для каждого элемента и зависит от интенсив­ности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале при­ближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра (рис. 1). Такой метод называют растрированием с амплитудной модуляцией (AM).

 

Рис. 1. Примеры амплитудной и частотной модуляции растра

Существует и метод растрирования с частотной модуляцией (ЧМ), когда интен­сивность тона регулируется изменением расстояния между соседними точками одинакового размера. Таким образом, при частотно-модулированном растрирова­нии в ячейках растра с разной интенсивностью тона находится разное число точек (см рис. 1). Изображения, растрированные ЧМ-методом, выглядят более каче­ственно, так как размер точек минимален и во всяком случае существенно меньше, чем средний размер точки при АМ-растрировании. Еще более повышает качество изображения разновидность ЧМ-метода, называемая стохастическим растрированием. В этом случае рассчитывается число точек, необходимое для отображения требуемой интенсивности тона в ячейке растра. Затем эти точки располагаются внутри ячейки на расстояниях, вычисленных квазислучайным методом (на самом деле используется специальный математический алгоритм). То есть регулярная структура растра внутри ячейки, как и на изображении в целом, вообще отсутствует (рис. 2). Поэтому при стохастическом ЧМ -растрировании теряет смысл понятие линиатуры растра, имеет значение лишь разрешающая способность устройства вывода. Такой способ требует больших затрат вычислительных ресурсов и высокой точности полиграфического оборудования; он применяется в основном для художествен­ных работ, при печати с числом красок, превышающим четыре.

Рис.2. Пример использования стохастического растра

Связь между параметрами изображения и размером файла. Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в пере­даче цветов и полутонов. Однако размеры файлов растровых иллюстраций стре­мительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего просмотра (стандартный размер 10x15 см, оцифрованный с разрешени­ем 200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с вклю­ченным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.

Масштабирование растровых изображений. Одним из недостатков растровой гра­фики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное коли­чество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию (рис 3). Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточ­ным для качественной визуализации при масштабировании. Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселиза­ции в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет мас­штабирования точек, а путем добавления необходимого числа промежуточных точек. При масштабировании растровой графики возможны потери в изображении.

 

Рис.3. Эффект пикселезации при масштабировании растрового изображения

 

Векторная графика

Если в растровой графике базовым элементом изображения является точка, то в векторной графике - линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.

Линия — элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (тек­стуры, карты) или выбранным цветом.

Простейшая незамкнутая линия Ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами.

Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно представить куб и как двенадцать связанных линий, образующих ребра.

 

Рис. 4. Объекты векторной графики

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 220; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.13.201 (0.041 с.)