Прерывания. Назначение и типы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Прерывания. Назначение и типы.



 

Прерывания являются основной движущей силой любой операционной систе­мы. Отключите систему прерываний — и «жизнь» в операционной системе не­медленно остановится. Периодические прерывания от таймера вызывают смену процессов в мультипрограммной ОС, а прерывания от устройств ввода-вывода управляют потоками данных, которыми вычислительная система обменивается с внешним миром.

Прерывания прерывают нормальную работу системы. Другими словами, система прерываний переводит процессор на выполнение потока команд, отличного от того, который выполнялся до сих пор, с последующим возвратом к исходному коду. Из сказанного можно сделать вывод о том, что механизм прерываний очень похож на механизм выполнения процедур (кода команд). Это на самом деле так, хотя ме­жду этими механизмами имеется важное отличие. Переключение по прерыва­нию отличается от переключения, которое происходит по команде безусловно­го или условного перехода, предусмотренной программистом в потоке команд приложения. Переход по команде происходит в заранее определенных програм­мистом точках программы в зависимости от исходных данных, обрабатываемых программой. Прерывание же происходит в произвольной точке потока команд программы, которую программист не может прогнозировать. Прерывание возни­кает либо в зависимости от внешних по отношению к процессу выполнения про­граммы событий, либо при появлении непредвиденных аварийных ситуаций в процессе выполнения данной программы. Сходство же прерываний с процеду­рами состоит в том, что в обоих случаях выполняется некоторая подпрограмма, обрабатывающая специальную ситуацию, а затем продолжается выполнение ос­новной ветви программы.

В зависимости от источника прерывания делятся на три больших класса:

□ внешние;

□ внутренние;

□ программные.

Внешние прерывания могут возникать в результате действий пользователя или оператора за терминалом, или же в результате поступления сигналов от аппарат­ных устройств — сигналов завершения операций ввода-вывода, вырабатываемых контроллерами внешних устройств компьютера, такими как принтер или нако­питель на жестких дисках, или же сигналов от датчиков управляемых компьюте­ром технических объектов. Внешние прерывания называют также аппаратными, отражая тот факт, что прерывание возникает вследствие подачи некоторой аппа­ратурой (например, контроллером принтера) электрического сигнала, который передается (возможно, проходя через другие блоки компьютера, например кон­троллер прерываний) на специальный вход прерывания процессора. Данный класс прерываний является асинхронным цр отношению к потоку инструкций преры­ваемой программы. Аппаратура процессора работает так, что асинхронные пре­рывания возникают между выполнением двух соседних инструкций, при этом система после обработки прерывания продолжает выполнение процесса, уже на­чиная со следующей инструкции.

Внутренние прерывания, называемые также исключениями (exeption), происхо­дят синхронно выполнению программы при появлении аварийной ситуации в ходе исполнения некоторой инструкции программы. Примерами исключений явля­ются деление на нуль, ошибки защиты памяти, обращения по несуществующему адресу, попытка выполнить привилегированную инструкцию в пользовательском режиме и т. п. Исключения возникают непосредственно в ходе выполнения так­тов команды («внутри» выполнения).

Программные прерывания отличаются от предыдущих двух классов тем, что они по своей сути не являются «истинными» прерываниями. Программное прерыва­ние возникает при выполнении особой команды процессора, выполнение которой имитирует прерывание, то есть переход на новую последовательность инструк­ций. Причины использования программных прерываний вместо обычных инст­рукций вызова процедур будут изложены ниже, после рассмотрения механизма прерываний.

Прерываниям приписывается приоритет, с помощью которого они ранжируются по степени важности и срочности. О прерываниях, имеющих одинаковое значе­ние приоритета, говорят, что они относятся к одному уровню приоритета преры­ваний.

Прерывания обычно обрабатываются модулями операционной системы, так как действия, выполняемые по прерыванию, относятся к управлению разделяемыми ресурсами вычислительной системы — принтером, диском, таймером, процессо­ром и т. п. Процедуры, вызываемые по прерываниям, обычно называют обработ­чиками прерываний, или процедурами обслуживания прерываний (Interrupt Service Routine, ISR).

Аппаратные прерывания обрабатываются драйверами соответствую­щих внешних устройств, исключения — специальными модулями ядра, а про­граммные прерывания — процедурами ОС, обслуживающими системные вызовы. Кроме этих модулей в операционной системе может находиться так называемый диспетчер прерываний, который координирует работу отдельных обработчиков прерываний.

 

Механизм прерываний

Механизм прерываний поддерживается аппаратными средствами компьютера и программными средствами операционной системы.

Аппаратная поддержка преры­ваний имеет свои особенности, зависящие от типа процессора и других аппарат­ных компонентов, передающих сигнал запроса прерывания от внешнего устрой­ства к процессору (таких, как контроллер внешнего устройства, шины подклю­чения внешних устройств, контроллер прерываний, являющийся посредником между сигналами шины и сигналами процессора). Особенности аппаратной реализации прерываний оказывают влияние на средства программной поддержки прерываний, работающие в составе ОС.

Существуют два основных способа, с помощью которых шины выполняют пре­рывания: векторный (vectored) и опрашиваемый (polled). В обоих способах про­цессору предоставляется информация об уровне приоритета прерывания на шине подключения внешних устройств. В случае векторных прерываний в процессор передается также информация о начальном адресе программы обработки возник­шего прерывания — обработчика прерываний.

Устройствам, которые используют векторные прерывания, назначается вектор прерываний. Он представляет собой электрический сигнал, выставляемый на со­ответствующие шины процессора и несущий в себе информацию об определен­ном, закрепленном за данным устройством номере, который идентифицирует со­ответствующий обработчик прерываний. Этот вектор может быть фиксированным, конфигурируемым (например, с использованием переключателей) или програм­мируемым. Операционная система может предусматривать процедуру регистра­ции вектора обработки прерываний для определенного устройства, которая свя­зывает некоторую подпрограмму обработки прерываний с определенным вектором. При получении сигнала запроса прерывания процессор выполняет специальный цикл подтверждения прерывания, в котором устройство должно идентифициро­вать себя. В течение этого цикла устройство отвечает, выставляя на шину вектор прерываний. Затем процессор использует этот вектор для нахождения обработ­чика данного прерывания. Примером шины подключения внешних устройств, кото­рая поддерживает векторные прерывания, является шина VMEbus.

При использовании опрашиваемых прерываний процессор получает от запросив­шего прерывание устройства только информацию об уровне приоритета преры­вания (например, номере IRQ на шине ISA или номере IPL на шине SBus компью­теров SPARC). С каждым уровнем прерываний может быть связано несколько устройств и соответственно несколько программ — обработчиков прерываний. При возникновении прерывания процессор должен определить, какое устройст­во из тех, которые связаны с данным уровнем прерываний, действительно запро­сило прерывание. Это достигается вызовом всех обработчиков прерываний для данного уровня приоритета, пока один из обработчиков не подтвердит, что пре­рывание пришло от обслуживаемого им устройства. Если же с каждым уровнем прерываний связано только одно устройство, то определение нужной программы обработки прерывания происходит немедленно, как и при векторном прерывании. Опрашиваемые прерывания поддерживают шины ISA, EISA, MCA, PCI и Sbus.

Механизм прерываний некоторой аппаратной платформы может сочетать век­торный и опрашиваемый типы прерываний. Типичным примером такой реализа­ции является платформа персональных компьютеров на основе процессоров Intel Pentium. Шины PCI, ISA, EISA или MCA, используемые в этой платформе в ка­честве шин подключения внешних устройств, поддерживают механизм опра­шиваемых прерываний. Контроллеры периферийных устройств выставляют на шину не вектор, а сигнал запроса прерывания определенного уровня IRQ. Одна­ко в процессоре Pentium система прерываний является векторной. Вектор пре­рываний в процессор Pentium поставляет контроллер прерываний, который ото­бражает поступающий от шины сигнал IRQ на определенный номер вектора.

Вектор прерываний, передаваемый в процессор, представляет собой целое число в диапазоне от 0 до 255, указывающее на одну из 256 программ обработки пре­рываний, адреса которых хранятся в таблице обработчиков прерываний. В том случае, когда к каждой линии IRQ подключается только одно устройство, проце­дура обработки прерываний работает так, как если бы система прерываний была чисто векторной, то есть процедура не выполняет никаких дополнительных опросов для выяснения того, какое именно устройство запросило прерывание. Однако при совместном использовании одного уровня IRQ несколькими уст­ройствами программа обработки прерываний должна работать в соответствии со схемой опрашиваемых прерываний, то есть дополнительно выполнить опрос всех устройств, подключенных к данному уровню IRQ.

 

Приоритет прерываний

Механизм прерываний чаще всего поддерживает приоритезацию и маскирование прерываний. Приоритезация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на преры­вание.

Приоритеты могут обслуживаться как относительные и абсолютные.

Об­служивание запросов прерываний по схеме с относительными приоритетами за­ключается в том, что при одновременном поступлении запросов прерываний из разных классов выбирается запрос, имеющий высший приоритет. Однако в даль­нейшем при обслуживании этого запроса процедура обработки прерывания уже не откладывается даже в том случае, когда появляются более приоритетные запросы — решение о выборе нового запроса принимается только в момент за­вершения обслуживания очередного прерывания. Если же более приоритетным прерываниям разрешается приостанавливать работу процедур обслуживания ме­нее приоритетных прерываний, то это означает, что работает схема приоритеза- ции с абсолютными приоритетами.

Если процессор (или компьютер, когда поддержка приоритезации прерываний вынесена во внешний по отношению к процессору блок) работает по схеме с аб­солютными приоритетами, то он поддерживает в одном из своих внутренних ре­гистров переменную, фиксирующую уровень приоритета обслуживаемого в дан­ный момент прерывания. При поступлении запроса из определенного класса его приоритет сравнивается с текущим приоритетом процессора, и если приоритет запроса выше, то текущая процедура обработки прерываний вытесняется, а по завершении обслуживания нового прерывания происходит возврат к прерван­ной процедуре.

Упорядоченное обслуживание запросов прерываний наряду со схемами приори­тетной обработки запросов может выполняться механизмом маскирования запро­сов. Собственно говоря, в описанной схеме абсолютных приоритетов выполняет­ся маскирование — при обслуживании некоторого запроса все запросы с равным или более низким приоритетом маскируются, то есть не обслуживаются. Схема маскирования предполагает возможность временного маскирования прерываний любого класса независимо от уровня приоритета.

 

Обработка прерываний

Обобщенно последовательность действий аппаратных и программных средств по обработке прерывания можно описать следующим образом.

1. При возникновении сигнала (аппаратные прерывания) или условия (внутренние прерывания) происходит первичное аппаратное распознавание типа прерывания. Если прерывания данного типа в настоящий момент запрещены (приоритетной схемой или механизмом маскирования), то процессор продолжает поддерживать естественный ход выполнения команд. В противном случае в зависимости от поступившей в процессор информации (уровень прерывания, вектор прерывания или тип условия внутреннего пре­рывания) происходит автоматический вызов процедуры обработки прерыва­ния, адрес которой находится в специальной таблице операционной системы, размещаемой либо в регистрах процессора, либо в определенном месте опера­тивной памяти.

2. Автоматически сохраняется некоторая часть контекста прерванного потока, которая позволит ядру возобновить исполнение потока процесса после обра­ботки прерывания. В это подмножество обычно включаются значения счетчи­ка команд, слова состояния машины, хранящего признаки основных режимов работы процессора (пример такого слова — регистр EFLAGS в Intel Pentium), а также нескольких регистров общего назначения, которые требуются про­грамме обработки прерывания. Может быть сохранен и полный контекст про­цесса, если ОС обслуживает данное прерывание со сменой процесса. Однако в общем случае это не обязательно, часто обработка прерываний выполняется без вытеснения текущего процесса[1].

3. Одновременно с загрузкой адреса процедуры обработки прерываний в счетчик команд может автоматически выполняться загрузка нового значения слова состояния машины (или другой системной структуры, например селектора кодового сегмента в процессоре Pentium), которое определяет режимы работы процессора при обработке прерывания, в том числе работу в привилегирован­ном режиме. В некоторых моделях процессоров переход в привилегированный режим за счет смены состояния машины при обработке прерывания является единственным способом смены режима. Прерывания практически во всех муль­типрограммных ОС обрабатываются в привилегированном режиме модулями ядра, так как при этом обычно нужно выполнить ряд критических операций, от которых зависит жизнеспособность системы, — управлять внешними устройст­вами, перепланировать потоки и т. п.

4. Временно запрещаются прерывания данного типа, чтобы не образовалась оче­редь вложенных друг в друга потоков одной и той же процедуры. Детали выполнения этой операции зависят от особенностей аппаратной платформы, например может использоваться механизм маскирования прерываний. Мно­гие процессоры автоматически устанавливают признак запрета прерываний в начале цикла обработки прерывания, в противном случае это делает програм­ма обработки прерываний.

5. После того как прерывание обработано ядром операционной системы, пре­рванный контекст восстанавливается и работа потока возобновляется с пре­рванного места. Часть контекста восстанавливается аппаратно по команде возврата из прерываний (например, адрес следующей команды и слово со­стояния машины), а часть — программным способом, с помощью явных ко­манд извлечения данных из стека. При возврате из прерывания блокировка повторных прерываний данного типа снимается.

 


 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-06; просмотров: 1145; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.168.172 (0.015 с.)