Разделение днк в агарозном геле 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Разделение днк в агарозном геле



Электрофорез ДНК

Теория электрофореза

 

Впервые явление электрофореза было открыто П. И. Страховым и Ф. Ф. Рейссом в 1809 году. В начале 70-ых годов было показано, что с помощью гель-электрофореза можно определить длину и чистоту молекул ДНК. Этот метод прост, так как каждый нуклеотид в молекуле нуклеиновой кислоты обладает отрицательным зарядом, который заставляет молекулы двигаться к положительному электроду. Были разработаны специальные полиакриламидные гели, с помощью которых удается разделить фрагменты ДНК длиной до 500 нуклеотидов, отличающиеся даже на один нуклеотид. Поскольку поры в полиакриламидном геле для больших молекул ДНК слишком малы, для их разделения по размеру были разработаны специальные гели на основе агарозы (полисахарид, выделяемый из морских водорослей). Оба эти метода разделения ДНК широко используются для аналитических и препаративных целей.

В 80-ых годах была предложена модификация гель-электрофореза в агарозном геле, названная электрофорезом в пульсирующем электрическом поле или пульс-электрофорез. С ее помощью удается разделять большие молекулы ДНК (от 10 т.п.н. до 10 млн.п.н.), к которым относятся хромосомные ДНК прокариот и низших эукариот. Обычный гельэлектрофорез не позволяет разделить такие молекулы ввиду постоянства электрического поля, которое придает молекулам змеевидную конфигурацию. Обладающие такой конфигурацией молекулы движутся в гелях с постоянной скоростью вне зависимости от длины молекул. Если же направление электрического поля будет часто меняться, скорость движения молекул будет определяться их способностью переориентироваться согласно этому изменению. Такой процесс у больших молекул занимает значительно больше времени, вследствие чего они будут отставать. На гелях после пульс-электрофореза целые хромосомы дрожжей выявляются в виде отдельных полос, и поэтому можно легко определить хромосомные перестройки.

Сейчас электрофорез занимает центральное место среди методов исследования нуклеиновых кислот. Метод позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как размеры (или молекулярная масса), пространственная конфигурация, вторичная структура и электрический заряд, причем эти параметры могут выступать как порознь, так и в совокупности.

Физический принцип метода заключается в следующем. Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, величина и знак которого зависят от рН среды. Если через этот раствор, заключенный в канал из изолирующего материала начать пропускать электрический ток, то вдоль канала установится определенный градиент напряжения, т. е. сформируется электрическое поле. Его напряженность измеряется разностью потенциалов по концам рабочего канала (или его участка), отнесенной к его длине (В/см). Под действием поля макромолекулы в соответствии со своим суммарным зарядом мигрируют в направлении катода или анода, причем их трение об окружающую среду ограничивает скорость миграции. В зависимости от величины заряда и размеров молекулы приобретают разные скорости, и в этом – сущность процесса электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны одинаковых молекул, мигрирующих с одной и той же скоростью. Со временем эти зоны распределяются по длине канала.

В современных приборах рабочий канал заполняют гелем. Достаточно чистая и хорошо смачиваемая (гидрофильная) пространственная сетка геля удерживает жидкость от вытекания и препятствует конвекции. Вместе с тем используемые гели содержат очень много жидкости (80-99,5 %), в которой (т.е. в рабочем буфере) и мигрируют макромолекулы. Наличие сетки геля вносит важную дополнительную деталь в картину электрофоретической миграции. Теперь фракционируемые макромолекулы любых размеров неизбежно сталкиваются с нитями полимера, образующего сетку геля, что увеличивает эффективное трение о среду, а следовательно, снижает скорость движения молекул. Очевидно, что препятствия для миграции становятся особенно серьезными, если средний диаметр пространственных ячеек геля оказывается соизмерим с размерами макромолекул. В этом случае решающее влияние на электрофоретическую подвижность различных макромолекул и степень разделения оказывает соотношение их линейных размеров. Возможна даже такая ситуация, когда особенно крупные молекулы нуклеиновых кислот вообще не смогут «протиснуться» через поры геля и их миграция прекратится.

В настоящее время почти исключительно используются полиакриламидные гели и гели агарозы. Варьируя концентрацию полимера, можно получать гели с очень широким диапазоном размеров пор. Кроме того, можно изменять электрические заряды макромолекул путем вариации рН буфера, а их конфигурацию путем введения в буфер денатурирующих агентов или детергентов. Все это придает методу электрофореза исключительную гибкость. Но есть, разумеется, и свои проблемы. Разделяемые макромолекулы все же находятся в растворе, поэтому возможна их диффузия, приводящая к размыванию зон. Это тем более серьезно, что протекание через жидкость электрического тока неизбежно связано с выделением тепла. К счастью, крупные молекулы нуклеиновых кислот диффундируют не слишком быстро.

Для визуализации результатов электрофореза проводят окрашивание зон путем вымачивания геля в растворе красителя, прочно связывающегося с нуклеиновой кислотой. Излишек красителя удаляют, а гель облучают ультрафиолетом, под действием которого связавшийся с двунитевой ДНК краситель флуоресцирует.

Электрофорез ДНК

Теория электрофореза

 

Впервые явление электрофореза было открыто П. И. Страховым и Ф. Ф. Рейссом в 1809 году. В начале 70-ых годов было показано, что с помощью гель-электрофореза можно определить длину и чистоту молекул ДНК. Этот метод прост, так как каждый нуклеотид в молекуле нуклеиновой кислоты обладает отрицательным зарядом, который заставляет молекулы двигаться к положительному электроду. Были разработаны специальные полиакриламидные гели, с помощью которых удается разделить фрагменты ДНК длиной до 500 нуклеотидов, отличающиеся даже на один нуклеотид. Поскольку поры в полиакриламидном геле для больших молекул ДНК слишком малы, для их разделения по размеру были разработаны специальные гели на основе агарозы (полисахарид, выделяемый из морских водорослей). Оба эти метода разделения ДНК широко используются для аналитических и препаративных целей.

В 80-ых годах была предложена модификация гель-электрофореза в агарозном геле, названная электрофорезом в пульсирующем электрическом поле или пульс-электрофорез. С ее помощью удается разделять большие молекулы ДНК (от 10 т.п.н. до 10 млн.п.н.), к которым относятся хромосомные ДНК прокариот и низших эукариот. Обычный гельэлектрофорез не позволяет разделить такие молекулы ввиду постоянства электрического поля, которое придает молекулам змеевидную конфигурацию. Обладающие такой конфигурацией молекулы движутся в гелях с постоянной скоростью вне зависимости от длины молекул. Если же направление электрического поля будет часто меняться, скорость движения молекул будет определяться их способностью переориентироваться согласно этому изменению. Такой процесс у больших молекул занимает значительно больше времени, вследствие чего они будут отставать. На гелях после пульс-электрофореза целые хромосомы дрожжей выявляются в виде отдельных полос, и поэтому можно легко определить хромосомные перестройки.

Сейчас электрофорез занимает центральное место среди методов исследования нуклеиновых кислот. Метод позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как размеры (или молекулярная масса), пространственная конфигурация, вторичная структура и электрический заряд, причем эти параметры могут выступать как порознь, так и в совокупности.

Физический принцип метода заключается в следующем. Находящиеся в буферном растворе макромолекулы обладают некоторым суммарным электрическим зарядом, величина и знак которого зависят от рН среды. Если через этот раствор, заключенный в канал из изолирующего материала начать пропускать электрический ток, то вдоль канала установится определенный градиент напряжения, т. е. сформируется электрическое поле. Его напряженность измеряется разностью потенциалов по концам рабочего канала (или его участка), отнесенной к его длине (В/см). Под действием поля макромолекулы в соответствии со своим суммарным зарядом мигрируют в направлении катода или анода, причем их трение об окружающую среду ограничивает скорость миграции. В зависимости от величины заряда и размеров молекулы приобретают разные скорости, и в этом – сущность процесса электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны одинаковых молекул, мигрирующих с одной и той же скоростью. Со временем эти зоны распределяются по длине канала.

В современных приборах рабочий канал заполняют гелем. Достаточно чистая и хорошо смачиваемая (гидрофильная) пространственная сетка геля удерживает жидкость от вытекания и препятствует конвекции. Вместе с тем используемые гели содержат очень много жидкости (80-99,5 %), в которой (т.е. в рабочем буфере) и мигрируют макромолекулы. Наличие сетки геля вносит важную дополнительную деталь в картину электрофоретической миграции. Теперь фракционируемые макромолекулы любых размеров неизбежно сталкиваются с нитями полимера, образующего сетку геля, что увеличивает эффективное трение о среду, а следовательно, снижает скорость движения молекул. Очевидно, что препятствия для миграции становятся особенно серьезными, если средний диаметр пространственных ячеек геля оказывается соизмерим с размерами макромолекул. В этом случае решающее влияние на электрофоретическую подвижность различных макромолекул и степень разделения оказывает соотношение их линейных размеров. Возможна даже такая ситуация, когда особенно крупные молекулы нуклеиновых кислот вообще не смогут «протиснуться» через поры геля и их миграция прекратится.

В настоящее время почти исключительно используются полиакриламидные гели и гели агарозы. Варьируя концентрацию полимера, можно получать гели с очень широким диапазоном размеров пор. Кроме того, можно изменять электрические заряды макромолекул путем вариации рН буфера, а их конфигурацию путем введения в буфер денатурирующих агентов или детергентов. Все это придает методу электрофореза исключительную гибкость. Но есть, разумеется, и свои проблемы. Разделяемые макромолекулы все же находятся в растворе, поэтому возможна их диффузия, приводящая к размыванию зон. Это тем более серьезно, что протекание через жидкость электрического тока неизбежно связано с выделением тепла. К счастью, крупные молекулы нуклеиновых кислот диффундируют не слишком быстро.

Для визуализации результатов электрофореза проводят окрашивание зон путем вымачивания геля в растворе красителя, прочно связывающегося с нуклеиновой кислотой. Излишек красителя удаляют, а гель облучают ультрафиолетом, под действием которого связавшийся с двунитевой ДНК краситель флуоресцирует.

Разделение ДНК в агарозном геле

 

Электрофорез в агарозном геле – стандартный метод, используемый для разделения, идентификации и очистки фрагментов ДНК. С помощью этой простой техники можно быстро разделить такие смеси фрагментов ДНК, которые не могут быть разделены другими способами, например центрифугированием в градиенте плотности. Кроме того, при разделении в геле прямо следят за положением ДНК, так как полосы ДНК в геле можно окрашивать флуоресцирующим и интеркалирующим в ДНК красителем – бромистым этидием в низкой концентрации. Просматривая прокрашенный гель в ультрафиолеотовом свете, можно заметить даже 1 нг ДНК.

Сочетание прочности и крупнопористости делает гели агарозы незаменимыми при электрофорезе особенно крупных макромолекул, в частности нуклеиновых кислот. Агароза – это особо чистая фракция природного линейного полисахарида агара, который извлекают из некоторых видов морских водорослей. Молекулярная масса ее составляет 104–105. Гелеобразование идет, как уже указывалось, путем связывания в пространственную сетку пучков нитей за счет водородных связей между ними. Некоторые виды агарозы образуют прочные гели уже при концентрации 0,3 %.

При температурах от 84 до 96 °С (а у специальных типов – уже при 70 °С) раствор агарозы переходит в прозрачную жидкость – «плавится». Растворы агарозы характеризуются ярко выраженным гистерезисом: они затвердевают, образуя гель, при значительно более низких температурах (36-42 °С). У легкоплавких типов агарозы эта температура снижается до 30°. Такая особенность облегчает манипуляции с расплавленной агарозой – можно не опасаться преждевременного ее застывания в гель. Более того, расплавленную на кипящей бане агарозу предварительно охлаждают до 50-55 °С уже при этой температуре дозируют и заливают в формы; это удобно и не связано с возникновением значительных тепловых деформаций.

Гели агарозы не вполне прозрачны, однако это обусловлено не наличием примесей, а своего рода «кристаллизацией» геля и свидетельствует, скорее, о чистоте агарозы. Затвердевший гель представляет собой не вполне равновесную систему: со временем он несколько уплотняется, выдавливая из себя жидкость. Этот процесс идет вначале довольно быстро, а потом – очень медленно. Тем не менее, гели агарозы перед опытом следует выдерживать в течение, по крайней мере, 12 ч (открытые пластины для горизонтального электрофореза выдерживают во влажной камере). Сжатие сильнее выражено у более концентрированных гелей агарозы.

Агароза для электрофореза выпускается обычно в виде лиофилизированного порошка. Для приготовления геля выбранной концентрации навеску порошка растворяют в соответствующем буфере и выдерживают на кипящей водяной бане или в термостате при 90-95 °С около 2 ч для образования истинного раствора полимера. Иногда раствор агарозы просто кипятят с обратным холодильником.

Разнообразные буферы, детергенты и другие добавки смешивают с раствором агарозы в горячем виде (при 50-60 °С). Впрочем, надо иметь в виду, что высокая концентрация агентов, диссоциирующих водородные связи, несколько затрудняет образование геля.

Плоские гели для горизонтального электрофореза готовят путем заливки дозированного объема расплавленной агарозы на строго горизонтальную пластинку нужного размера.

Выбор концентрации агарозы, т.е. пористости ее геля, диктуется размерами фракционируемых макромолекул. Средний размер пор 2%-ного геля агарозы приблизительно соответствует диаметру сферически упакованной молекулы биополимера с массой 50 млн. дальтон. Гели с более высоким содержанием агарозы используют для гель-фильтрации. При электрофорезе поры геля должны быть легко проницаемы для молекул биополимеров, чтобы лишь тормозить их миграцию в электрическом поле за счет трения, поэтому для электрофореза применяют агарозные гели с концентрацией 0,4–2 %. Ниже в таблице 8 для ориентировки представлены примерные концентрации гелей агарозы (в процентах) для некоторых распространенных образцов фракционирования:

 

Таблица 9

Количество агарозы в геле, % Объекты
0,4 Высокомолекулярная ДНК вирусов и плазмид
0,7 Рестрикты ДНК (5–20 тыс. н.п)
1,0 мРНК, денатурированная обработкой метилртутью
1,5 Реовирусная двунитевая РНК (500–5000 н.п.)
1,75 Рибосомная РНК
2,0 Нативные мРНК; рестрикты ДНК (100–1000 н.п.)

 

Перед заливкой в форму или на пластину раствор горячей агарозы охлаждают до 50 °С и выдерживают не менее 1 ч в термостате при данной температуре. Это необходимо для полного выравнивания температуры раствора по всему его объему, чем обеспечивается одновременное застывание всего геля и однородность его структуры.

Гель, полимеризованный на пластинке, помещают на столик открытой поверхностью кверху, поскольку препараты вносят в ряд специальных лунок, образованных опусканием в гель гребёнки и расположенных на некотором расстоянии от его края. Схема прибора для проведения горизонтального электрофореза показана на рисунке 29. Следует быстро вносить препараты в лунки и сразу же начинать электрофорез, так как образцы могут диффундировать в геле.

Рисунок 29 – Электрофорезная ванна, подложка и гребенки для горизонтального электрофореза ДНК в агарозном геле

 

Скорость миграции ДНК через агарозный гель при электрофорезе определяются пятью главными параметрами, рассмотренными ниже.

Размер молекул ДНК. Молекулы линейной двуцепочечной ДНК перемещаются в геле одним концом вперёд со скоростями, обратно пропорциональными десятичному логарифму их молекулярных масс.

Концентрация агарозы. Фрагменты ДНК данного размера перемещаются в геле, содержащем разные концентрации агарозы, с разными скоростями. Применяя гели разных концентраций, можно разделить большой набор фрагментов ДНК, различающихся по размеру (таблица 10).

 

Таблица 10 Зависимость разделения линейных молекул ДНК от концентрации агарозного геля

Количество агарозы в геле, % Область эффективного разделения линейных молекул ДНК, тыс. н.п.
0,3 60–5
0,6 20–1
0,7 10–0,8
0,9 7–0,5
1,2 6–0,4
1,5 4–0,2
2,0 3–0,1

Конформация ДНК. ДНК, имеющие одинаковую молекулярную массу, но разные конформации, например кольцевая неповреждённая (форма I), кольцевая с одноцепочечным разрывом (форма II) и линейная (форма III), движутся в агарозном геле с разными скоростями (рис. 30).Относительная подвижность трёх указанных форм зависит главным образом от концентрации агарозы в геле, а также от таких факторов, как сила тока, ионная сила буфера или плотность сверхспиральных витков в форме I.

 
 


I, II, III – конформации плазмидной ДНК (пояснения в тексте).

Рисунок 30 – Изображение электрофоретической подвижности препаратов ДНК: а) высокополимерной линейной ДНК, выделенной из молок лосося (IСN); б) ДНК фага l, расщепленной эндонуклеазой Hind III на линейные фрагменты с фиксированной длиной; в) плазмидной ДНК pUC19

Напряжённость электрического поля. При низких напряжённостях скорость перемещения фрагментов линейной ДНК пропорциональна приложенному напряжению. Однако с увеличением напряжённости электрического поля подвижность фрагментов ДНК с высокой молекулярной массой дифференциально возрастает. Следовательно, с увеличением напряжённости область эффективного разделения ДНК в агарозном геле снижается. Максимальное разделение фрагментов происходит при напряжённости, не превышающей 5 В/см.

Состав оснований и температура. Электрофоретическое поведение ДНК в агарозных гелях (в отличие от поведения в полиакриламидных гелях) слабо зависит от состава оснований ДНК или температуры геля. Обычно электрофорез проводят при комнатной температуре, однако следует отметить, что гели, содержащие менее 0,5 % агарозы, очень мягкие, поэтому с ними лучше работать при 4 ˚С.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 2874; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.171.235 (0.03 с.)