Расчеты зон санитарной охраны (ЗСО) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчеты зон санитарной охраны (ЗСО)



Достаточно часто для расчета границ поясов используют аналитические методы. Примеры: 1) Изолированный пласт, без потока

естественно, что ЗСО будет иметь форму круга с радиусом

Радиус ЗСО

(t - разные для II и III поясов)

m0 =мощность водоносного горизонта, м, n* - активная пористость

t = 200 сут (микробный – 2пояс ЗСО) t = 104 сут (химический – 3 пояс ЗСО)

При наличии потока ЗСО приобретает вид эллипса с меньшей полуосью вниз по потоку. Вверх по потоку размер ЗСО будет больше - есть дополнительная естественная скорость – а вниз - меньше. Ширина – даже несколько меньше.

Для сложных структур потока используют расчеты по сетке движения, построенной по резул модел гидродин задачи работы ВЗ.

9. Источники подтопления на градопромышленных территориях, образование техногенной верховодки, влияние подтопления на оползневые и суффозионные процессы.

Подтопление - повышение уровня подземных вод и увлажнение грунтов зоны аэрации, приводящие к нарушению хозяйственной деятельности на данной территории, изменению физических и физико-химических свойств подземных вод, преобразованию почвогрунтов, видового состава, структуры и продуктивности растительного покрова, трансформации мест обитания животных.

Градо-промышленная гидрогеология рассматривает решение задач гидрогеологического обоснования строительства и эксплуа­тации промышленных и гражданских сооружений, причем на градо-промышленных агломерациях основными задачами являются изучение подтопления и загрязнения территорий применительно к обоснованию управления этими процессами. Особым направлени­ем решения проблем борьбы с загрязнением на градо-промышленных территориях является устройство объектов скла­дирования и захоронения промышленных и бытовых отходов, в которых по особенностям гидрогеологического обоснования выде­ляются объекты закачки промышленных стоков в глубокие водо­носные горизонты.

2.1.Подтопление градо-промышленных территорий

Подтопление территорий, являющееся одним из наиболее распространенных и опасных геологических экзогенных процес­сов, происходит в результате подъема УГВ, приводящего к ухуд­шению инженерно-геологической и экологической обстановок.

Проявления подтопления и защита подтопляемых территорий

Характер формирования подтопления предопределяется соче­танием источников (факторов) обводнения и гидрогеологических условий на подтопляемых территориях. Обычно подтопление тер­риторий происходит в две стадии: при строительстве — за счет увеличения инфильтрации при планировке территорий и засыпке естественных дрен — и при эксплуатации — за счет повышенной инфильтрации осадков, утечек производственных вод, потерь воды из водопроводных и канализационных сетей, при орошении на городских территориях. К внешним источникам обводнения градо-промышленных территорий относятся создание водохранилищ, прудов-накопителей и поступление воды со стороны окружающих орошаемых территорий.

Образование верховодки на водонепроницаемых линзах в зоне аэрации

В пределах зоны аэрации, как правило, весьма часто встречаются линзы водоупорных пород, на которых происходит скопление инфильтрующейся воды (рис. 1), с образованием верховодки. При периодическом поступлении инфильтрационного питания формирующаяся на таких линзах верховодка носит временный характер, а при постоянной инфильтрации образуется техногенная линза грунтовых вод (техногенная верховодка). Плановые размеры техногенной верховодки определяются контурами линзы водоупорных пород, максимальная высота слоя воды зависит от проницаемости пород и интенсивности инфильтрации.

2.12. В случае вытянутых в плане водоупорных линз (когда их длина более чем в 5 раз превышает ширину) фильтрацию воды в плане можно считать плоской. Процесс формирования верховодки (рис. 1, а) описывается формулой

mn - корни уравнения mn tg mn = Bi.

Предельное (стационарное) положение уровня воды техногенной верховодки находится по зависимости

(3)

Рис. 1. Схемы к формированию техногенной верховодки в зоне аэрации на непроницаемых линзах удлиненной (а) и округлой (б) в плане формы.

2.13. Прямоугольные или округлые в плане водоупорные линзы при расчетах необходимо заменить круглыми с приведенным радиусом R (рис. 1, б), метод определения которого указан выше.

Первые шесть корней этого уравнения приведены в прил. 3. Ряд в формуле (4) сходится очень быстро и при расчетах можно ограничиться двумя-тремя членами.

Предельное (стационарное) положение техногенной верховодки рассчитывается по формуле

(5)

Формулы (2) и (6) показывают, что процесс формирования верховодки очень быстро стабилизируется.

Техногенные водоносные горизонты формируются на первом от поверхности земли региональном водоупоре (рис. 2) под влиянием дополнительного инфильтрационного питания. При этом на водоупоре происходит постепенное накопление воды с образованием увеличивающегося во времени купола грунтовых вод в зоне действия дополнительной инфильтрации. Растекание этого купола происходит по водоупору и замедляет процесс повышения уровней. Процесс формирования техногенного водоносного горизонта зависит от интенсивности, формы и плановых размеров источника дополнительной инфильтрации, в пластах неограниченных в плане размеров он всегда является нестационарным.

При поступлении дополнительной инфильтрации в пределах полосы шириной 2 L (см. рис. 2, а)

Рис. 2. Схемы к формированию техногенного водоносного горизонта на региональном водоупоре в первоначально сухих грунтах при поступлении инфильтрации из источника полосообразной (а) и круглой (б)в плане формы

Подтопление градо-промышленных территорий может приво­дить к проявлениям опасных геологических процессов:

1) Существенное влияние на формирование оползней 2) проявление суффозионных процессов(но должно быть место куда может выноситься порода). Щелевая суффозия в щели в инженерных коммуникациях(тоннели метро, канализационные коллекторы) – влечет образование провалов на поверхности.

Для защиты: 1)гидроизоляция 2)дренаж(горизонтальный-труба для отвода и вертикальный-вертикальные скважины)

Требуется ГГ обоснование дренажа. Вообще эта проблема связана со строением дренируемых водоносных пород которые представлены гр. водами или верховодкой.

 

1 тип Однопластовый поток. Наиболее благоприятные условия для дренажа. Если высокая проводимость (больше 100-200 мкв/сут) то эффективен вертик.дренаж

2 тип Поток 2-х этажного строения. Появляется грунтовый поток с верховодкой. Основная опасность – подтопление со стороны верховодки. Техногенная верх-ка (дополняется техногенными источниками питания) В данном случае подойдет т.н. сбросной дренаж. Вертикальные скважины до УГВ.

10. Конструкции дренажа на градопромышленных территориях: гидрогеологические условия применения вертикального, горизонтального и сбросного видов дренажа. Гидрогеологическое обоснование дренажа изысканий при строительстве.

КОНСТРУКЦИИ ДРЕНАЖЕЙ

По характеру пространственного расположения водоприемного и водоотводящего конструктивных элементов дренажей последние подразделяются на горизонтальные, вертикальные и комбинированные.

Горизонтальные дренажи

Горизонтальный гравитационный дренаж является наиболее распространенным видом дренажа, применяется для защиты от подтопления грунтовыми водами значительных территорий, небольших участков или отдельных сооружений и, как самостоятельный элемент инженерной зашиты, обычно укладывается на глубинах до 6 - 8 м.

В современных условиях промышленной и городской застройки обычно устраивается закрытый дренаж трубчатого тина, хотя при определенных обстоятельствах не исключается применение и открытого горизонтального дренажа в виде траншеи или канала.

Разновидностью горизонтального дренажа является пластовый дренаж.

В современной практике строительства горизонтальных трубчатых дренажей на промышленных и городских территориях применяются три основных конструктивных типа:

· традиционной конструкции с трубчатой основой из керамических, асбестоцементных, бетонных, чугунных, реже пластмассовых труб с двумя-тремя слоями фильтрующей обсыпки из рыхлого сортированного материала - песка, гравия, щебня (рис. 37);

· с трубчатой основой и фильтрующими обертками из различного типа тканых и нетканых минеральных или полимерных материалов (рис. 38); эти обертки могут применяться как самостоятельно, так и в сочетании с обсыпками из рыхлых материалов;

· с применением трубофильтров (рис. 39) в сочетании с одним слоем песчаной обсыпки, или с фильтрующей оберткой, или без таковых.

Крупность материала и количество слоев рыхлых обсыпок в дренажах традиционной конструкции подбирается по соответствующим методикам в зависимости от условий дренирования, вида дренируемого грунта и выбранных форм и размеров водоприемных отверстий.

Прием воды из пласта производится либо через стыковые зазоры между дренажными трубами, либо через круглые отверстия или щелевые пропилы в стенке трубы.

ГИДРОГЕОЛОГИЧЕСКИЕ РАСЧЕТЫ ДРЕНАЖНЫХ СИСТЕМ. ОБЩИЕ ПОЛОЖЕНИЯ

Дренажные системы на подтопленных территориях должны обеспечить требуемое снижение уровней грунтовых вод, которое определяется заглублением подвальных помещений, тоннелей, коммуникаций и других подземных сооружений, а при защите значительных по площади территорий - нормой осушения.

При защите от подземных вод заглубленных сооружений пониженный уровень грунтовых вод должен находиться ниже основания этих сооружений не менее чем на высоту капиллярного поднятия воды в осушаемых грунтах. Плановое расположение дренажа того или иного типа зависит от того, застроена защищаемая территория или только предусматривается к строительному освоению.

В первом случае (т.е. на застроенных территориях) размещение дренажных сооружений определяется взаимным расположением зданий, сооружений, коммуникаций.

Дренажная система трассируется по участкам, свободным от застройки, хотя такое расположение ее с точки зрения гидродинамических условий работы может оказаться далеко не наилучшим. Во втором случае (т.е. на территориях, подлежащих застройке) размещение дренажа обосновывается гидрогеологическими и технико-экономическими расчетами.

Тип применяемого дренажа - горизонтальный, вертикальный или комбинированный - зависит главным образом от литологического строения дренируемых грунтов,



Поделиться:


Последнее изменение этой страницы: 2017-01-26; просмотров: 402; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.230.82 (0.01 с.)