Материалы с высоким сопротивлением 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Материалы с высоким сопротивлением



В качестве материалов с высоким сопротивлением используют металлические сплавы типа твердых растворов замещения, метал­лические и угольные пленки, проводниковые композиции.

Материалы высокого сопротивления по назначению можно раз­делить на проводниковые резистивные материалы, пленочные ре­зистивные материалы, материалы для термопар.

1. Проводниковые резистивные материалы

Проводниковые резистивные материалы разделяют на сплавы для проволочных резисторов (манганин, константам) и для элект­ронагревательных элементов (нихром, фехраль, хромаль).

К проволочным резистивным материалам предъявля­ются следующие требования:

удельное электрическое сопротивление р при нормальной тем­пературе нс менее 0,3 мкОм • м и высокая стабильность его значе­ния во времени;

малый температурный коэффициент термоЭДС в паре сплава с медью;

малый температурный коэффициент удельного электрического сопротивления;

технологичность.

В отличие от материалов с высокой проводимостью (чистых металлов) резистивные материалы представляют собой в основном сплавы с заметно деформированной кристаллической решеткой, что характерно для твердых растворов металлов. Для получения про­волоки разного диаметра, применяемой для изготовления прово­лочных резисторов различного назначения, наибольшее распрост­ранение получили сплавы на основе меди и никеля. Важнейшие элек­трические характеристики этих сплавов зависят от процентного соотношения меди и никеля.

Манганин - сравнительно пластичный сплав, получивший свое название из-за содержания в нем марганца (от лат. manganum). Его примерный состав: медь Си - 85% (большое содержание меди при­дает сплаву желтоватый цвет), марганец Мп - 12%, никель Ni- 3%.

После прокатки и волочения из манганина можно получить про­волоку диаметром до 0,02 мм. При температуре 60°С манганино­вая проволока начинает окисляться, поэтому ее применяют в стек­лянной изоляции, которая отличается высокими электроизоляци­онными свойствами, повышенной нагрево- и влагостойкостью.

Микропровод используют для конструирования миниатюрных высокоточных элементов, в том числе прецизионных резисторов больших номиналов.

К недостаткам манганинового микропровода относят невысо­кую воспроизводимость характеристик и пониженную гибкость из-за хрупкости стеклянной изоляции.

Константан представляет собой твердый раствор никеля и меди, получивший свое название за высокое постоянство коэффициента удельного электрического сопротивления р (константа) при изме­нении температуры. Вредной примесью для константана является сера S, образующая с никелем эвтектику (легко плавящуюся смесь) с низкой температурой плавления. При этом связь между зернами сплавляемых компонен­тов нарушается и переработка слитков в проволоку становится не­возможной. Эвтектика способствует развитию межкристаллитной коррозии. Для устранения вредного влияния серы в состав сплава вводят марганец. После гомогенизации (процесс смешивания различных веществ с целью получения смеси равномерной консистенции) константановые слитки подвергают прокатке и волочению и протягивают в проволоку ди­аметром до 0,02 мм. Ориентировочный состав константана: медь Сu - 58,5%, никель Ni- 40%, марганец Мn - 1,5%.

Широкому применению константана препятствует его повышен­ная стоимость из-за большого содержания в нем дефицитного никеля.

К сплавам для электронагревательных элементов предъявляются следующие требования: высокий коэффициент удельного электрического сопротивления р, малый температурный коэффициент удельного электрического сопротивления, дли­тельная работа на воздухе при высоких температурах (иногда до 1000°С и даже выше), технологичность, невысокая стоимость и до­ступность компонентов.

К нагревостойким сплавам относят сплавы на основе железа, ни­келя, хрома и алюминия. Высокая нагревостойкость этих сплавов достигается благодаря введению в их состав достаточно большого количества металлов, которые образуют при нагреве на воздухе сплошную оксидную пленку.

Нихромы представляют собой твердые растворы никель-хром (Ni-Сr) или тройные сплавы никель-хром-железо (Ni-Cr-Fe).

Железо вводится в сплав для обеспечения лучшей обрабатывае­мости и снижения стоимости, но в отличие от никеля и хрома желе­зо легко окисляется, что приводит к снижению нагревостойкости сплава; содержание хрома придает высокую тугоплавкость окси­дам. Близость значений температурных коэффициентов линейного расширения этих сплавов и их оксидных пленок повышает стой­кость хромоникелевых сплавов при высокой температуре воздуха. Растрескивание оксидных пленок происходит при резких сменах температуры. В результате кислород воздуха проникает в образо­вавшиеся трещины и продолжает процесс окисления. Поэтому при многократном кратковременном включении электронагревательно­го элемента из нихрома он перегорает значительно быстрее, чем в случае непрерывной работы при той же температуре. Для увеличе­ния срока службы трубчатых нагревательных элементов нихромовую проволоку помещают в трубки из стойкого к окислению ме­талла и заполняют их диэлектрическим порошком с высокой теп­лопроводностью (магнезий Mg). Такие нагревательные элементы применяют, например, в электрических кипятильниках, которые могут работать длительное время.

Нихромовая проволока применяется для изготовления проволоч­ных резисторов, потенциометров, паяльников, электропечей и пле­ночных резисторов интегральных схем.

Плавка нихромовых сплавов осуществляется в высокочастотных вакуумных печах. Полученные после плавки отливки обжимаются до 12 мм, а затем на волочильных станках изготавливают проволо­ку диаметром до 0,12 мм.

Как и константаны, нихромы содержат большое количество до­рогого дефицитного никеля.

Хромоалюминиевые сплавы фехраль и хромаль намно­го дешевле нихромов, так как хром и алюминий сравнительно де­шевле и менее дефицитны. Однако они менее технологичны, более твердые и хрупкие. Из них получают проволоку большего диамет­ра и ленты с большим поперечным сечением, поэтому их использу­ют в электронагревательных устройствах большей мощности и про­мышленных электрических печах.

2. Пленочные резистивные материалы

Пленочные резистивные материалы получают из исходных ма­териалов в процессе получения самих резистивных пленок. Свой­ства таких резистивных пленок значительно отличаются от свойств исходных материалов. Тонкие резистивные пленки наносят на изо­ляционные основания (подложки) методом термического испаре­ния в вакууме; катодным, реактивным и ионоплазменным распыле­нием, электрохимическим и химическим осаждением и др. В каче­стве оснований используют стекло, керамику, ситалл, поликор, сло­истые пластики и др.

В зависимости от исходных материалов пленочные резисторы разделяют на металлопленочные и металлооксидные, композици­онные, углеродистые.

Для изготовления металлопленочных и металлооксидных резис­торов применяют тугоплавкие металлы тантал, титан, никель, хром, палладий, рений, вольфрам и сплавы на их основе.

3. Материалы для термопар

Для термопар применяют чистые металлы и различные сплавы с высоким электрическим сопротивлением.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 313; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.196.217 (0.006 с.)