Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Правила работы в лаборатории органического практикума↑ Стр 1 из 5Следующая ⇒ Содержание книги Поиск на нашем сайте
Аннотация Приведено описание шести лабораторных работ по основам нефтехимии. Методические рекомендации по выполнению лабораторных работ сопровождаются кратким теоретическим введением из одноименного курса, разделом техники безопасности и списком рекомендованной литературы. Работа выполнена в рамках проекта Федеральной целевой программы «Интеграция науки и высшего образования России на 2002-2006 г.г.». Печатается по решению методической комиссии химического факультета Нижегородского государственного университета им.Н.И.Лобачевского (протокол № 10 от 16 июня 2003 г.)
Авторы: к.х.н., старший преподаватель Е.В.Колякина, ассистент кафедры химии нефти М.В.Павловская
Научный редактор – д.х.н., профессор Д.Ф.Гришин
Рецензент: к.х.н, доцент В.И. Петьков ВВЕДЕНИЕ Работа в практикуме по химии нефти и нефтехимическому синтезу требует от студента высокой собранности, аккуратности и точности в проведении экспериментальной работы, т. к. большинство нефтепродуктов являются горючими или даже легко воспламеняющимися жидкостями. Перед началом работы студенты сдают допуск к работе, включающий теоретические основы того раздела практикума, которому посвящено практическое задание, а также экспериментальную часть работы. По результатам эксперимента студент оформляет отчет по работе, содержащий: название работы, цель работы, краткое теоретическое введение, экспериментальную часть, выводы и список использованной при выполнении задания литературы. Отчет по работе представляется на следующее после выполнения работы занятие. Правила работы в лаборатории органического практикума При выполнении работ по нефтехимическому синтезу и анализу нефти и нефтепродуктов необходимо строго соблюдать правила противопожарной безопасности, к которым относятся следующие: - нагревать и перегонять легко воспламеняющиеся жидкости необходимо на водяной бане. Запрещается нагревать указанные вещества на открытом пламени. Склянки с указанными жидкостями не следует оставлять вблизи зажженного огня; - в случае воспламенения жидкости необходимо использовать для тушения сухой песок, кошму (одеяло) или огнетушитель, имеющиеся в лаборатории; - при загорании одежды следует плотно обернуть пострадавшего одеялом (кошмой) и тем самым прекратить доступ воздуха к горящему объекту. Следует учитывать, что многие соединения, входящие в состав нефти, являются ядовитыми и вредными для здоровья, поэтому работу с ними следует проводить в вытяжном шкафу. Запрещается: - глубоко вдыхать пары нефтепродуктов при работе с ними и определении их запаха; - пробовать реактивы на вкус, принимать пищу в лаборатории; - выливать в раковину органические вещества, а также сильно пахнущие неорганические соединения. Для слива указанных соединений в вытяжном шкафу есть специальные емкости. ЛАБОРАТОРНАЯ РАБОТА № 1 Определение фракционного состава нефти и нефтепродуктов путем прямой перегонки и ректификации I. Прямая перегонка нефти Обычно процесс простой перегонки проводят периодически; в принципе этот процесс можно организовать и непрерывным. При периодической перегонке жидкость постепенно испаряется, и образующиеся при этом пары непрерывно удаляются из системы и конденсируются с получением дистиллята (иногда этот процесс называют простой дистилляцией). При этом содержание низкокипящей фракции (НК) в исходной жидкости уменьшается, что приводит к снижению содержания НК в дистилляте - в начале процесса содержание НК максимально, а в конце процесса - минимально. Простую перегонку можно проводить при атмосферном давлении или под вакуумом (для снижения температуры перегонки). Для получения нужных фракций (или разного состава дистиллята) применяют фракционную, или дробную, перегонку. Проведение работы
Собирают установку для перегонки (рис. 1). Во взвешенную колбу помещают 30 мл отфильтрованного нефтепродукта и снова взвешивают для определения массы нефтепродукта. В колбу помещают кипелки. При простой перегонке термометр следует помещать так, чтобы верхняя граница ртутного шарика находилась на уровне нижнего края отверстия отводной трубки. После того, как установка для перегонки полностью собрана, подставляют нагревательный прибор. Отбор фракций производится двумя способами: отбираются фракции с четкими температурами кипения, если в течение перегонки не устанавливается четкая температура кипения, то отбор фракций проводится через 50С. Для каждой фракции определить выход и показатель преломления. По окончании перегонки, остывшую колбу взвешивают для определения массы кубового остатка (запись результатов производится как приведено во II разделе). Задание: Определить фракционный состав нефти. Полученные результаты сравнить с данными, полученными при фракционировании нефти на ректификационной колонке. Приборы и реактивы Нефть или смесь органических веществ (углеводородов), колба Вюрца, дефлегматор, обратный холодильник, головка полной конднсации, приемники, термометр на 2500С, кипелки, электронагревательный прибор. Перед перегонкой ректификационную колонку собирают так, как это изображено на рис.2.
В колбу 4 загружают взвешенные 30 мл хорошо высушенной исследуемой жидкости. Определение массы нефтепродукта проводят также, как и при прямой перегонке, см. п.I. Перед началом перегонки в колбу необходимо поместить кипелки. Колбу присоединяют к дефлегматору 3, сообщенной с головкой полной конденсации 2, к которой присоединен приемник 6. Шлифы прибора должны быть промазаны смазкой, нерастворимой в перегоняемой жидкости. Приемниками служат пришлифованные колбы емкостью 15—25 мл. Термометр (с ценой деления 0.2— 0.50С) устанавливают так, чтобы его шарик находился на 1—2 смниже боковой трубки. Кранголовки полной конденсации держат закрытым, чтобы колонка работала с полным орошением, без отбора дистиллята. Необходимо дать колонке «захлебнуться» — заполнить центральную трубку и часть головки. Таким образом, из насадки удаляется воздух и вся она смачивается флегмой и паром. При «захлебывании» желательно регулировать нагрев колбы так, чтобы до появления жидкости в головке прошло 15—20 мин. Через 5—10 минпосле «захлебывания» уменьшают нагрев колбы. Поддерживая слабое кипение жидкости в колбе и не прекращая орошения, дают стечь избытку флегмы в колбу. Затем устанавливают оптимальный режим перегонки. По достижении равновесия записывают температуру кипения жидкости, и слегка открывают кран для отбора дистиллята. При отборе дистиллята нужно не только поддерживать в колонке режим, близкий к только что установленному, но и следить за соотношением орошения, возвращаемого в колонку, и дистиллята, отбираемого в приемник, за один и тот же промежуток времени. Для хорошего разделения важно, чтобы это соотношение (флегмовое число) было высоким, но чтобы количество флегмы не достигало величины, при которой колонка начинает «захлебываться». Для большинства простейших колонок оптимальное флегмовое число должно лежать в интервале 20:1 - 45:1. Перегонку ведут до заданной глубины отбора, после чего отставляют колбонагреватель, дают жидкости охладиться и стечь в колбу. Колбу отсоединяют от колонки и взвешивают. Суммируют массы отогнанных фракций и остатка и вычисляют потери при перегонке. Обычно их относят к массе первой фракции. В каждой из фракций в дальнейшем определяют показатель преломления и, если требуется, плотность. При разделении углеводородов перегонкой следует выделять фракции в правильных температурных интервалах. Если фракционирование осуществляется для выделения заранее намеченных соединений с уже известными температурами кипения, то при первой перегонке фракции отбирают так, чтобы их низшие и высшие пределы отстояли одинаково от точек кипения соответствующих чистых веществ. Подвергая выделенные фракции повторному фракционированию, температурные пределы все более сужают, пока не будут достигнуты постоянные точки кипения. Если же целью фракционирования является выделение возможно большего числа индивидуумов, то при первых перегонках отбирают фракции в пределах 10 или 50С. Отбор дистиллята Отбор дистиллята можно проводить непрерывно, периодически и смешанным способом. ЛАБОРАТОРНАЯ РАБОТА № 2 Очистка нефтепродуктов от ароматических углеводородов адсорбцией на адсорбционной колонке При изучении химического состава углеводородов важное место отводится хроматографическим методам исследования. Бензиновые фракции разделяют на группы углеводородов при помощи жидкостно-адсорбционной хроматографии, чаще называемой просто адсорбционной. Для исследования индивидуального химического состава фракций (особенно низкокипящих) часто применяется газожидкостная хроматография. Адсорбционный анализ основан на способности адсорбентов избирательно извлекать из смесей соединения определенных типов. Для разделения углеводородов применяют различные адсорбенты: окись алюминия, активированный уголь, силикагель и др. Чаще всего используют силикагель. Ароматические углеводороды более прочно удерживаются на поверхности адсорбента, чем парафиновые и нафтеновые. Пропуская смесь углеводородов сверху вниз по колонке с адсорбентом, обычно с добавлением растворителя, выделяют из колонки вначале парафиновые и нафтеновые углеводороды, а затем ароматические. Для выделенных фракций измеряют объем и исследуют (определяют наличие ароматических углеводородов, показатель преломления, анилиновую точку и т.п.). При адсорбционном разделении бензиновых фракций применяют два типа растворителей: вытесняющие и смещающие. Вытесняющие растворители — спирты (изопропиловый, этиловый, метиловый) — адсорбируются сильнее компонентов бензина и выделяются из колонки вслед за ароматическими углеводородами. В этом случае нельзя достигнуть полного разделения бензина на две фракции— парафино-нафтеновую и ароматическую, так как они движутся по колонке вплотную друг к другу. Поэтому приходится еще отбирать промежуточную фракцию, представляющую собой их смесь. Смещающие (разбавляющие) растворители — пентан, изопентан — близки по адсорбируемости к парафино-нафтеновой фракции. Такие растворители смешиваются в колонке с углеводородами, постепенно десорбируя их и заставляя двигаться вниз. Если вслед за смещающим растворителем (изопентан) ввести в колонку вытесняющий (метанол, этанол), то можно отделить парафино-нафтеновую фракцию без отбора промежуточной. Измеряя показатель преломленияфильтрата, можно обнаружить компоненты смеси в такой последовательности: парафины + нафтены —> парафины + нафтены + изопентан —> изопентан + ароматические углеводороды -> метанол + ароматические углеводороды —> метанол. Фракции парафино-нафтеновых и ароматических углеводородов выделяют из фильтрата отгонкой изопентана. Фракцию ароматических углеводородов отделяют от метанола промывкой водой, после чего обезвоживают СаСl2 и металлическим натрием. Для бензинов, содержащих до 15 объемных % ароматических углеводородов, удобно применять адсорбционное разделение с вытесняющим растворителем и отбором промежуточной фракции, при более высоком содержании в бензине ароматических углеводородов рекомендуется разделение при помощи смещающей жидкости + вытесняющий растворитель. IV. Вязкость Вязкость, как и плотность, — важный физико-химический параметр, используемый при подсчете запасов нефти, проектировании разработки нефтяных месторождений, выбора способа транспорта и схемы переработки нефти. Различают динамическую, кинематическую и условную вязкость. Динамическая вязкость η — это отношение действующего касательного напряжения к градиенту скорости при заданной температуре. Единица измерения динамической вязкости паскаль-секунда — Па•с, на практике используют обычно мПа•с. Необходимость определения кинематической и условной вязкости связана с тем, что для определения динамической вязкости требуется источник постоянного давления (постоянно приложенного напряжения) на жидкость. Это условие предопределяет дополнительные технические трудности, сложность воспроизведения и трудоемкость анализа. Кинематическая вязкость ν — это отношение динамической вязкости жидкости к плотности при той же температуре: ν = η/ρ Единица кинематической вязкости м2/с, на практике используют обычно мм2/с. Сущность метода определения кинематической вязкости заключается в замене постоянного давления (внешней силы) давлением столба жидкости, равным произведению высоты столба жидкости, плотности жидкости и ускорения силы тяжести. Эта замена привела к значительному упрощению и распространению метода определения кинематической вязкости в стеклянных капиллярных вискозиметрах. Определение условной вязкости также основано на истечении жидкости (как правило, для этих целей используют трубку с диаметром отверстия 5 мм) под влиянием силы тяжести. Условная вязкость — отношение времени истечения нефтепродукта при заданной температуре ко времени истечения дистиллированной воды при 200С. Единица измерения — условные градусы (0ВУ). Метод определения условной вязкости применяется для нефтепродуктов, дающих непрерывную струю в течение всего испытания и для которых нельзя определить кинематическую вязкость по ГОСТ 33—82. Условную вязкость определяют для нефтяных топлив (мазутов). Определение кинематической вязкости обязательно для таких товарных нефтепродуктов, как дизельные топлива и смазочные масла (ньютоновские жидкости). Согласно унифицированной программе исследования для нефтей определяют кинематическую (или динамическую) вязкость при температурах от 0 до 500С (через 10 0С). Для маловязких нефтей определение начинают с 200С. Для керосиновых дистиллятов определяют кинематическую вязкость при 20 — 400С. Для дизельных — при 200С, для масляных — при 40, 50 и 1000С. Для остатков, выкипающих выше 3500С, определяют условную вязкость при 50, 80 и 1000С. На вязкость нефти и нефтепродуктов существенное влияние оказывает температура. С ее понижением вязкость увеличивается. Вязкостно-температурные свойства нефтепродуктов зависят от их фракционного и углеводородного состава. Наименьшей вязкостью и наиболее пологой кривой вязкости обладают алифатические углеводороды. Наибольшей вязкостью и наиболее крутой кривой вязкости — ароматические (особенно би- и полициклические) углеводороды. Важным эксплуатационным показателем топлив и масел является прокачиваемость. Прокачиваемость моторных топлив и топлив для газотурбинных и котельных установок существенно зависит от их вязкости. Например, количество бензина вязкостью 0.65 мм2/с, поступающего в двигатель за одну минуту, составляет 100 г, а бензина вязкостью 1.0 мм2/с — 95 г. В технических требованиях на товарные топлива и смазочные масла предусмотрены соответствующие ограничения значения вязкости. Так, топлива для быстроходных дизелей должны иметь кинематическую вязкость при 200С в пределах 1.5—6.0 мм2/с. С понижением температуры высоковязкие нефти, природные битумы и остаточные нефтепродукты (мазут, гудрон) могут проявлять аномалию вязкости, так называемую структурную вязкость. При этом их течение перестает быть пропорциональным приложенному напряжению, т. е. они становятся неньютоновскими жидкостями. Причиной структурной вязкости является содержание в нефти и нефтепродукте смолисто-асфальтеновых веществ и парафинов. Для оценки вязкостно-температурных свойств масел имеются соответствующие зависимости для расчета температурного коэффициента вязкости (ТКВ) и индекса вязкости (ИВ). Определение кинематической вязкости ЛАБОРАТОРНАЯ РАБОТА № 5 ЛАБОРАТОРНАЯ РАБОТА № 6 Анилиновый метод Среди неинструментальных методов определения группового химического состава бензиновых фракций наиболее широкое распространение получил анилиновый метод, основанный на неодинаковой растворимости углеводородов различных классов в анилине. При смешении нефтяной фракции с анилином при комнатной температуре обычно образуются два слоя, т. е. не происходит полного растворения нефтепродукта в анилине. Если эту смесь нагревать, постоянно перемешивая, то при достижении определенной температуры произойдет полное взаимное растворение анилина и нефтепродукта, слои исчезнут, и жидкость станет однородной. Температуру, соответствующую полному взаимному растворению анилина и нефтепродукта, называют анилиновой точкой или критической температурой растворения (КТР) данного нефтепродукта в анилине. Наиболее низкими анилиновыми точками среди углеводородов характеризуются арены, наиболее высокими — алканы; циклоалканы занимают промежуточное положение. Алкены и циклоалкены имеют несколько более низкое значение анилиновых точек по сравнению с циклоалканами близкой молекулярной массы. В пределах одного гомологического ряда анилиновые точки, как правило, возрастают с увеличением массы и температуры кипения углеводорода. Такая же закономерность наблюдается и для фракций, выделенных из одной и той же нефти. Существуют два метода определения анилиновых точек: метод равных объемов и метод максимальных анилиновых точек. В первом случае берут равные объемы анилина и исследуемой фракции и определяют температуру их полного смешения. Полученную температуру называют анилиновой точкой. Во втором случае находят температуру, называемую максимальной анилиновой точкой или истинной критической температурой растворения в анилине. Ее получают после нескольких определений температуры растворения продукта в возрастающих количествах анилина. При увеличении количества анилина температура полного растворения сначала повышается и при некотором соотношении фракции и анилина достигает максимума, после чего при дальнейшем увеличении количества анилина начинает падать. Максимальную температуру полного растворения принимают за максимальную анилиновую точку (истинную КТР в анилине). Обычно разница между анилиновыми точками фракций и их максимальными анилиновыми точками невелика, причем она увеличивается с ростом температур кипения фракций и увеличением содержания в них аренов. ОГЛАВЛЕНИЕ Стр.
Аннотация Приведено описание шести лабораторных работ по основам нефтехимии. Методические рекомендации по выполнению лабораторных работ сопровождаются кратким теоретическим введением из одноименного курса, разделом техники безопасности и списком рекомендованной литературы. Работа выполнена в рамках проекта Федеральной целевой программы «Интеграция науки и высшего образования России на 2002-2006 г.г.». Печатается по решению методической комиссии химического факультета Нижегородского государственного университета им.Н.И.Лобачевского (протокол № 10 от 16 июня 2003 г.)
Авторы: к.х.н., старший преподаватель Е.В.Колякина, ассистент кафедры химии нефти М.В.Павловская
Научный редактор – д.х.н., профессор Д.Ф.Гришин
Рецензент: к.х.н, доцент В.И. Петьков ВВЕДЕНИЕ Работа в практикуме по химии нефти и нефтехимическому синтезу требует от студента высокой собранности, аккуратности и точности в проведении экспериментальной работы, т. к. большинство нефтепродуктов являются горючими или даже легко воспламеняющимися жидкостями. Перед началом работы студенты сдают допуск к работе, включающий теоретические основы того раздела практикума, которому посвящено практическое задание, а также экспериментальную часть работы. По результатам эксперимента студент оформляет отчет по работе, содержащий: название работы, цель работы, краткое теоретическое введение, экспериментальную часть, выводы и список использованной при выполнении задания литературы. Отчет по работе представляется на следующее после выполнения работы занятие. Правила работы в лаборатории органического практикума При выполнении работ по нефтехимическому синтезу и анализу нефти и нефтепродуктов необходимо строго соблюдать правила противопожарной безопасности, к которым относятся следующие: - нагревать и перегонять легко воспламеняющиеся жидкости необходимо на водяной бане. Запрещается нагревать указанные вещества на открытом пламени. Склянки с указанными жидкостями не следует оставлять вблизи зажженного огня; - в случае воспламенения жидкости необходимо использовать для тушения сухой песок, кошму (одеяло) или огнетушитель, имеющиеся в лаборатории; - при загорании одежды следует плотно обернуть пострадавшего одеялом (кошмой) и тем самым прекратить доступ воздуха к горящему объекту. Следует учитывать, что многие соединения, входящие в состав нефти, являются ядовитыми и вредными для здоровья, поэтому работу с ними следует проводить в вытяжном шкафу. Запрещается: - глубоко вдыхать пары нефтепродуктов при работе с ними и определении их запаха; - пробовать реактивы на вкус, принимать пищу в лаборатории; - выливать в раковину органические вещества, а также сильно пахнущие неорганические соединения. Для слива указанных соединений в вытяжном шкафу есть специальные емкости. ЛАБОРАТОРНАЯ РАБОТА № 1
|
||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-15; просмотров: 432; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.108.47 (0.017 с.) |