МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ (МтО). 





Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ (МтО).



Система митохондриального окисления - мультиферментная система, постепенно транспортирующая протоны и электроны на кислород с образованием молекулы воды.

Все ферменты митохондриального окисления встроены во внутреннюю мембрану митохондрий. Только первый переносчик протонов и электронов - никотинамидная дегидрогеназа расположена в матриксе митохондрии. Этот фермент отнимает водород от субстрата и передает его следующему переносчику. Полный комплекс таких ферментов образует "дыхательный ансамбль" («дыхательную цепь»), в пределах которого атомы водорода отнимаются от субстрата, затем передаются последовательно от одного переносчика к другому, и, наконец, передаются на кислород воздуха с образованием воды.

Существует строгая последовательность работы каждого звена в цепочке переносчиков. Эта последовательность определяется величиной РЕДОКС-ПОТЕНЦИАЛА (ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИАЛА, сокращенно - ОВП) каждого звена. ОВП - это химическая характеристика способности вещества принимать и удерживать электроны. Выражается в вольтах (V). Вещества с положительным ОВП окисляют водород (отнимают от него электроны), вещества с отрицательным ОВП окисляются самим водородом. Самый низкий ОВП имеет начальное звено цепи, самый высокий - у кислорода, расположенного в конце цепочки переносчиков. Таким образом, передача водорода идет от более низкого к более высокому ОВП. Перенос водорода и электронов возможен только в одном направлении - в порядке возрастания их ОВП: от -0.32V у никотинамидных дегидрогеназ (первого компонента главной цепи МтО) до 0.82V у О2, обладающего самым высоким редокс-потенциалом.

На одной из стадий происходит разделение атомов водорода на Н+ и электроны. Протоны остаются временно в окружающей среде, а электроны идут дальше по цепи и в ее конце используются для активации О2. Кислород является конечным акцептором электронов.

O2 + 4e -----> 2O-2 (полное восстановление кислорода)

Все реакции, происходящие в дыхательной цепи, сопряжены. Переносчики водорода и электронов расположены в строгом порядке, в соответствии с величиной их редокс-потенциала.

В настоящее время различают три варианта дыхательных цепей: 1)

ГЛАВНАЯ (ПОЛНАЯ) ЦЕПЬ

УКОРОЧЕННАЯ (СОКРАЩЕННАЯ) ЦЕПЬ

МАКСИМАЛЬНО УКОРОЧЕННАЯ (МАКСИМАЛЬНО СОКРАЩЕННАЯ) ЦЕПЬ.

ГЛАВНАЯ ДЫХАТЕЛЬНАЯ ЦЕПЬ

Главная дыхательная цепь - это три мультиферментных комплекса, встроенных во внутреннюю мембрану митохондрии. Обозначаются они латинскими цифрами – I, III и IV.

Комплекс I – НАДН-KoQ-редуктаза, комплекс III – KoQH2-редуктаза, комплекс IV – цитохромоксидаза. Есть еще комплекс II – сукцинат-KoQ-редуктаза, но он существует отдельно от остальных комплексов и не входит в состав главной цепи.Эти комплексы транспортируют водород от никотинамидных дегидрогеназ на кислород воздуха, в результате чего создается электрохимический градиент концентраций протонов - DmH+. Он возникает на внутренней мембране митохондрий между матриксом и межмембранным пространством. Его составляют два основных фактора:Электрический мембранный потенциал Dy.Градиент pH (осмотический или химический градиент).DmH+=Dy-k×DpH

DmH+ - положительная величина. Его можно выразить как в вольтах (V), так и в единицах энергии (кДж/моль). Изменение значения pH на одну единицу соответствует 0,06V или 5,7 кДж/моль.

Энергия DmH+ используется для следующих процессов:

Синтез АТФ.

Получение тепла(особенно важно для бурого жира и для мышечной ткани птиц).

Выполнение осмотической работы(транспорт фосфата в матрикс митохондрии).

Мышечная работа(в некоторых случаях).

Для человека наиболее важен синтез АТФ.

В полной цепи при окислении субстрата два атома водорода переносятся на НАД – кофермент никотинамидных дегидрогеназ.

Как видно из приведенной схемы, в полной цепи при передаче двух атомов водорода на кислород воздуха, в межмембранном пространстве оказываются 10 протонов, перенесенных сюда из матрикса.

Все переносчики встроены во внутреннюю мембрану митохондрий, кроме никотинамидных дегидрогенказ. Они составляют дыхательный ансамбль, тысячи таких ансамблей существуют в митохондрии и потребляют 90-95% кислорода, который используется клеткой. Два атома водорода отнимаются от субстрата и передаются на О2 с образованием Н2О. Разность потенциалов на двух концах полной цепи составляет 1.14V.

Окислительное фосфорилировавние. Синтез АТФ за счет энергии, которая выделяется в системе МтО, называется ОКИСЛИТЕЛЬНЫМ ФОСФОРИЛИРОВАНИЕМ. Основная роль АТФ - обеспечение энергией процесса синтеза АТФ.

Очень важной ф-ей цепи дыхательных катализаторов, связанных с внутренней мембраной митохондрий, наряду с переброской электронов от субстратов дыхания на кислород, является аккумуляция части освобвждающийся энергии в фосфатных связях высокоэргических соединений, главным образом АТФ. Процесс сопряжения тканевого дыхания и фосфолирования получил название окислительного фосфорилирования. Установлено, что уменьшение свободной энергии системы при переносе пары электронных эквивалентов от НАДН2 к молекулярному кислороду равно 220 кДж (52.7 ккал). В свою очередь величина стандартной свободной энергии рбразования АТФ из АДФи Н3РО4 (АДФ+Н3РО4=АТФ+Н2О)находится в пределах 30,2 кДж. Следовательно, уменьшение свободной энергии свободной энергии при переносе одной пары электронов от НАДН2 к О2 способно обеспечить синтез 36 молекул АТФ.

Для оценки эффективности работы системы МтО при окислении вычисляют КОЭФФИЦИЕНТ P/O. Он показывает, сколько молекул неорганического фосфата присоединилось к АДФ в расчете на один атом кислорода.

Для главной (полная) цепи Р/О=3 (10H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 3,3 (округляют до 3-х)), коэффициент полезного действия системы - 65%, для укороченной P/O=2 (6H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 2, для максимально укороченнойP/O=1 (4H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 1.

Система МтО потребляет 90% кислорода, поступающего в клетку. При этом в сутки образуется 62 килограмма АТФ. Но в клетках организма содержится всего 20-30 граммов АТФ. Поэтому молекула АТФ в сутки гидролизуется и снова синтезируется в среднем 2500 раз (средняя продолжительность жизни молекулы АТФ - полминуты).

 

15,16.ВНЕМИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ

На его долю приходится 5-10% кислорода, поступающего в организм. АТФ во внемитохондриальном окислении никогда не образуется.

Существуют 2 типа внемитохондриального окисления:





Последнее изменение этой страницы: 2016-12-28; просмотров: 61; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.211.101.93 (0.008 с.)