Инструментальные легированные стали. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Инструментальные легированные стали.



Режущий инструмент работает в условиях длительного контакта и трения с обрабатываемым материалом. Поэтому стали для инструмента должны обладать высокой твердостью и изностойкостью.

Содержание углерода в легированных инструментальных сталях такое же высокое, как и в углеродистых инструментальных: более 1%. Все инструментальные стали обязательно подвергаются термической обработке для повышения твердости.

В свою очередь легированные инструментальные стали подразделяются еще на несколько групп

Легированные стали для режущего инструмента (работающие с низкими скоростями резания) – низколегированные стали с невысоким содержанием легирующих элементов таких, как хром, вольфрам, кремний, марганец в количестве 1 – 3%. Эти стали должны отвечать общим требованиям, предъявляемым к инструментальным сталям: высокой твердостью и износостойкостью. Легирующие элементы вводятся в эту группу сталей для улучшения процесса термической обработки (для увеличения прокадиваемости).

Быстрорежущие стали работают с высокими скоростями резания, поэтому в процессе работы они нагреваются до достаточно высоких температур. Причем, чем выше скорости резания, тем выше температура нагрева режущей кромки инструмента и тем больше вероятность ее поломки.

К быстрорежущим сталям помимо основных требований предъявляются требования к теплостойкости. Высокую теплостойкость обеспечивает введение легирующего элемента вольфрама. Кроме того, быстрорежущие стали обязательно подвергаются специальной термической обработке.

Штамповые стали используются для изготовления штампов, форм и пуансонов для штамповки деталей. При этом штамповка может быть холодная и горячая. В связи с этим различают легированные штамповые стали для холодного и горячего деформирования.

Основными требованиями для штамповых сталей являются высокая твердость, износостойкость, а также способность сохранять форму и размеры штампов при длительном использовании. Для горячих штампов требуются стали с высокой теплостойкостью.

Штамповые стали легируют хромом, марганцем, никелем, молибденом, вольфрамом. Все штамповые стали используются после термической обработки.

Твердые сплавы состоят из смеси порошков карбида вольфрама (основа) и кобальта. В зависимости от марки этих сплавов в их состав добавляют карбид титана или карбид тантала. Таким образом, твердые сплавы формируются на карбидной основе методом порошковой металлургии. Они представляют собой спеченные материалы. Твердые сплавы имеют очень высокие значения твердости.

Используются как инструментальные материалы для обработки твердых материалов; для оснащения горного инструмента; для деталей быстро изнашивающихся элементов машин; для различных приспособлений режущего инструмента.

 

Стали с особыми свойствами.

К этой группе легированных сталей относятся коррозионностойкие (нержавеющие) стали; жаропрочные и жаростойкие стали.

Требования, предъявляемые к каждой группе зависят от условий их работы и соответствуют эксплуатационным свойствам, которые были рассмотрены ранее: жаростойкость, жаропрочность, устойчивость против воздействия агрессивных сред.

Коррозионностойкие стали.

Коррозионностойкие стали устойчивы воздействию агрессивных сред – коррозии.

Коррозией называют разрушение материалов под влиянием окружающей среды в результате ее химического или электрохимического воздействия.

Различают:

1. Электрохимическую коррозию (контакт двух материалов, обла-

дающих разными электродными потенциалами);

2. Точечную (язвенную) коррозию (возникает при локальном воз-

действии агрессивной среды);

3.Щелевую коррозию (возникает в узких зазорах между металлами);

4. Коррозионное растрескивание КР (возникает под воздействием

агрессивной среды и нагрузки);

5. Межкристаллитная коррозия (растрескивание по границам зерен).

Методы защиты от коррозии:

1. Нанесение защитных покрытий и пленок.

2. Легирование.

Основной легирующий элемент в нержавеющих (коррозионностойких) сталях – Хром.

Хром вводят в нержавеющие стали в количестве более 12,5%. При таком содержании хрома электрохимический потенциал стали меняется с отрицательного на положительный (рис.12.1).

Рис.12.1.

Помимо хрома в нержавеющие стали вводят дополнительно никель. В зависимости от легирующих элементов коррозионностойкие стали подразделяются на:

1. Хромистые (легирующий элемент – только хром)

2. Хромоникелевые (легирующие элементы - хром и никель).

Примеры хромистых нержавеющих сталей: 08Х13, 20Х13, 30Х13, 12Х17, 15Х25, 15Х28.

Примеры хромоникелевых нержавеющих сталей: 08Х18Н9, 10Х18Н10, 12Х18Н10Т.

 

Жаростойкие стали.

Как было показано выше жаростойкость (окалиностойкость ) - способность металла сопротивляться воздействию газовой среды при высоких температурах.

Железо с кислородом может образовывать оксиды следующего вида: FeO, Fe2О3, Fе3О4. При рабочих температурах порядка 550 - 600°С окалина состоит в основном из достаточно прочного слоя оксидов Fe2О3 и Fе3О4. При температурах выше 600°С происходит растрескивание этих оксидов. Поверхность металла защищена только рыхлым оксидом FeO, который не осуществляет необходимого по прочности защитного слоя, что приводит к интенсивному окислению сталей при температурах, превышающих 600°С.

Таким образом, основным фактором, влияющим на жаростойкость, является химический состав стали, определяющий защитные свойства оксидной пленки. Основными принципами легирования жаростойких сталей является введение в их состав элементов, образующих прочные соединения скислородом. В первую очередь это такие элементы, как хром, кремний и алюминий.

Однако, следует учитывать влияние этих элементов и на другие факторы и свойства стали. Так, высокое содержание алюминия и кремния способствует охрупчиванию и ухудшает технологические свойства стали. Поэтому, основным легирующим элементом в жаростойких сталях считаетсяхром. Причем с увеличением содержания хрома растут жаростойкие свойства, а, следовательно, и применение сталей при более высоких рабочих температурах.

Сталь с 5% хрома сохраняет свои свойства до 600°С, содержащая 9% хрома не подвержена образованию окалины в газовой среде до температур 800°С, а сталь с 17% - до 900°С. Для сохранения высокой окалиностойкости при температурах 1000 - 1100°С следует применять хромо-никелевые стали аустенитного класса.

Жаростойкие стали используют для изготовления различных деталей нагревательных устройств и энергетических установок.

Большинство жаростойких сталей являются также нержавеющими, а некоторые коррозионностойкие стали являются также жаростойкими.

Таким образом нержавеющие и жаростойкие стали могут быть взаимозаменяемыми.

 

Жаропрочные стали.

Ранее было показано, что жаропрочность - способность сталей сопротивляться деформации и разрушению при высоких температурах. Также были рассмотрены такие характеристики жаропрочности, как горячая прочность, предел длительной прочности и предел ползучести.

В качестве жаропрочных сталей используют стали легированные хромом, молибденом, ванадием. Эти стали сохраняют свои свойства при рабочих температурах 500 - 550°С. Их используют для изготовления крепежа, труб, паропроводов, пароперегревателей энергетических установок.

При температурах 600 - 620°С используются стали легированные хромом, молибденом, вольфрамом, ванадием, никелем. Эти стали используют для деталей энергетического оборудования таких как роторы, турбинные лопатки и диски.

Хромо-никелевые стали используются для изготовления лопаток и дисков газовых турбин, клапанов дизельных двигателей и других деталей, работающих при температурах 650 - 700°С. Эти стали дополнительно легируют молибденом, вольфрамом, ванадием, ниобием.

Для деталей и изделий, работающих при более высоких рабочих температурах, порядка 1000 - 1100°С. применяют так называемые суперсплавы - никелевые, кобальтовые, железоникелевые сплавы. Их применяют при изготовлении газотурбинных двигателей для аэрокосмических и промышленных энергоустановок.

Для работы при еще более высоких температурах применяют сплавы на основе тугоплавких металлов и керамические материалы.

Краткая характеристика всех групп легированных сталей (конструкционные, инструментальные, нержавеющие) приведена в таблицах 1 и 2..


Классификация конструкционных сталей ТАБЛИЦА 1.

Название стали Содержание углерода, % Основные легир. элементы Термическая обработка Свойства Применение Примеры
Низколегиро-ванные строительные 0,08 - 0,25 Mn, Si Без спец. Т/о после нормализации Низкая прочность, хорошая свариваемость Сварные конструкции. Строительство, мостостроение вагоностроение, трубы нефте- и газопроводов 08Г2С 14Г2 14ХГС
Цементуемые 0,15-0,20 Cr, Ni Цементация + Закалка + Низкий отпуск. Высокая твердость и износостойкость поверхности; мягкая сердцевина Зубчатые колеса, валы коробки передач; детали, работающие в условиях поверхностного износа. 20ХН 15Х 20Х
Улучшаемые 0,3-0,5 Cr, Ni, Mn, Si, Mo, V, W Закалка + Высокий отпуск. (улучшение) Хорошее сочетание прочности, пластичности, вязкости; высокая прокаливаемость Детали различного сечения, работающие в условиях нагружения ЗОХГСА 40Х ЗОХМ 38ХНЗМФА
Рессорно-пружинные 0,5 - 0,7 Mn, Si, Закалка + Средний отпуск Высокая упругость, твердость, прочность, предел выносливости Пружины, рессоры 60С2 50С2
Шарикопод-шипниковые 0,9-1,1 Cr, Si, Mn, Закалка + Низкий отпуск. Высокая твердость, контактная выносли­вость Подшипники качения ШХ9 ШХ15 (X - хром в десятых долях %)
Высокопроч-ные Менее 0,03 Ni, Co, Mo Закалка на воздухе + старение (выделение из мартенсита дисперсных частиц интерметал-лидов) Высокая прочность; высокая вязкость и пластичность. В ракетостроении, авиа­строении, судостроении; детали, работающие при низких температурах 03Н18К9М5Т 03Н10Х11М2Т

Классификация инструментальных сталей ТАБЛИЦА 2.

Название стали Основные легир. элементы Термическая обработка Свойства Применение Примеры
Для режущего инструмента повышенной прокаливаемости Cr, W Закалка в масле + Низкий отпуск. Высокая твердость, высокая прокаливаемость Для режущего инструмента, работающего с небольшими скоростями резания; сверла, лезвия 9ХВГ 13Х 9ХС
Быстрорежущие W, Мо Закалка с 1250- 1270°С + 3-х кратный отпуск при 550 -570 °С Высокая твердость, высокая теплостойкость Режущий инструмент, работающий при высоких скоростях резания (фрезы, сверла, протяжки, метчики и т.д.) Р9, Р18, Р6М5 (Р-быстрореж., цифра-содерж. W в %)
Штамповые Cr, Mo, W, V, Ni Закалка в масле + отпуск при 150-200°С (для холодной деформ); Закалка в масле + отпуск 500-580 °С (для горячей деформации) Высокая твердость, изностойкость Штампы для холодного и горячего деформирования (пресс-формы, матрицы, пуансоны и т.д.) Х12М Х12Ф

Нержавеющие стали

Обозначение стали Содержание углерода, % Содержание легир. элем., % Термическая обработка Свойства Применение
08X13 12X13 0,08-0,12 Сr = 13% Отжиг Высокая пластичность Работа в слабоагрессивных средах при нормальной температуре
30X13 40X13 0,3 - 0,4 Сr = 13% Закалка + Низкий отпуск. Высокая твердость, высокая устойчивость против коррозии Режущий, измерительный, медицинский, хирургический инструмент
12X17 0,1 - 0,12 Сr = 17% Рекристаллизацион-ный отжиг Высокая пластичность, техно­логичность Оборудование пищевой и легкой промышленности, кухонная утварь
15Х25Т 15X28 0,12 - 0,15 Сr = 25 - 28% Отжиг Высокая коррозионная стойкость Сварные детали пищевой и легкой промышленности, детали, работающие в более агрессивных средах; трубы теплообменной аппаратуры
08Х18Н10 12Х18Н9 08Х18Н10Т 0,08 - 0,12 Сr = 18% Ni = 9 - 14% Mo, Ti, Nb Закалка в воде при 1000-1100°С (аустенизация) Высокая коррозионная стойкость в сильно агрес. средах; высокая пластичность, деформируемость, немагнитны Детали холодильной промышленности, криогенной техники, пищевой пром.; работа в средах (кислоты, щелочи, морская вода)

 



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 1221; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.94.150.98 (0.031 с.)