![]()
Заглавная страница
Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь ![]() Мы поможем в написании ваших работ! КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Мы поможем в написании ваших работ! ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Стандарты интеллектуального анализа данных (методология SEMMA, стандарты CWM, CRISP, PMML и др.)
Стандарты, описывающие методологию Data Mining - рассматривают организацию процесса Data Mining и разработку Data Mining- систем. CRISP-DM - стандартный межотраслевой процесс Data Mining, является наиболее популярной и распространенной методологией. В соответствии со стандартом CRISP, Data Mining является непрерывным процессом со многими циклами и обратными связями. Data Mining по стандарту CRISP-DM включает следующие фазы: 1. Осмысление бизнеса (Business understanding). 2. Осмысление данных (Data understanding). 3. Подготовка данных (Data preparation). 4. Моделирование (Modeling). 5. Оценка результатов (Evaluation). 6. Внедрение (Deployment). К этому набору фаз иногда добавляют седьмой шаг - Контроль, он заканчивает круг. При помощи методологии CRISP-DM Data Mining превращается в бизнес-процесс, в ходе которого технология Data Mining фокусируется на решении конкретных проблем бизнеса. Методология CRISP-DM описывается в терминах иерархического моделирования процесса, который состоит из набора задач, описанных четырьмя уровнями обобщения (от общих к специфическим): фазы, общие задачи, специализированные задачи и запросы.
SEMMA методология реализована в среде SAS Data Mining Solution (SAS). Ее аббревиатура образована от слов "Отбор данных", т.е. создание выборки, "Исследование отношений в данных", "Модификация данных", "Моделирование взаимозависимостей", Оценка полученных моделей и результатов". Подход SEMMA подразумевает, что все процессы выполняются в рамках гибкой оболочки, поддерживающей выполнение всех необходимых работ по обработке и анализу данных. Подход SEMMA сочетает структурированность процесса и логическую организацию инструментальных средств, поддерживающих выполнение каждого из шагов. Благодаря диаграммам процессов обработки данных, подход SEMMA упрощает применение методов статистического исследования и визуализации, позволяет выбирать и преобразовывать наиболее значимые переменные, создавать модели с этими переменными, чтобы предсказать результаты, подтвердить точность модели и подготовить модель к развертыванию.
Эта методология не навязывает каких-либо жестких правил. Разработчик может располагать научными методами построения концепции проекта, его реализации, а также оценки результатов проектирования.
Как уже отмечалось, описанные стандарты являются методологиями Data Mining, т.е. рассматривают организацию процесса и разработку систем Data Mining. Помимо этой группы, сущ-т ряд стандартов, цель которых - согласовать достижения в Data Mining, упростить управление моделированием процессов и дальнейшее использование созданных моделей. Эти стандарты условно можно поделить на две категории: 1. Стандарты, относящиеся к выработке единого соглашения по хранению и передаче моделей Data Mining. 2. Стандарты, относящиеся к унификации интерфейсов.
Стандарт PMML PMML - язык описания предикторных (или прогнозных) моделей или языке разметки для прогнозного моделирования. PMML относится к группе стандартов по хранению и передаче моделей Data Mining.
Основа этого стандарта - язык XML. Примером другого стандарта, также основанного на языке XML, является стандарт обмена статистическими данными и метаданными. Стандарт PMML используется для описания моделей Data Mining и статистических моделей. Основная цель стандарта PMML - обеспечение возможности обмена моделями данных между программным обеспечением разных разработчиков (с другими PMML-инструментами). Таким образом, модель, созданная в одном программном продукте, может использоваться для прогнозного моделирования в другом.
Стандарт PMML включает: описание анализируемых данных (структура и типы данных); описание схемы анализа (используемые поля данных); описание трансформаций данных (например, преобразования типов данных); описание статистик, прогнозируемых полей и самих прогнозных моделей.
|
||
Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.206.177.17 (0.006 с.) |