Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Контроль показателей микроклимата

Поиск

 

Измерения показателей микроклимата проводят в рабочей зоне на высоте 1,5 м от пола, повторяя их в различное время дня и года, в разные периоды технологического процесса. Измеряют температуру, относительную влажность и скорость движения воздуха.

Для измерения температуры и относительной влажности воздуха используют аспирационный психрометр Асмана (рис. 2.6). Он состоит из двух термометров. У одного из них ртутный резервуар покрыт тканью, которую увлажняют с помощью пипетки. Сухой термометр показывает температуру воздуха. Показания влажного термометра за­висят от относительной влажности воздуха: температура его тем мень­ше, чем ниже относительная влажность, поскольку с уменьшением влажности возрастает скорость испарения воды с увлажненной ткани и поверхность резервуара охлаждается более интенсивно.

Чтобы исключить влияние подвиж­ности воздуха в помещении на показа­ния влажного термометра (движение воздуха повышает скорость испарения воды с поверхности увлажненной ткани, что ведет к дополнительному охлажде­нию ртутного баллона с соответствую­щим занижением измеряемой величины влажности по сравнению с ее истинным значением) оба термометра помещены в металлические защитные трубки. С целью повышения точности и стабиль­ности показаний прибора в процессе измерения температуры сухим и влаж­ным термометрами через обе трубки пропускаются постоянные потоки воз­духа, создаваемые вентилятором, разме­щенным в верхней части прибора.

Перед измерением в специальную пипетку набирают воду и увлажняют ее тканевую оболочку влажного термомет­ра. При этом прибор держат вертикаль­но, затем взводят часовой механизм и устанавливают (подвешивают или удер­живают в руке) в точке измерения.

Через 3...5 мин показания сухого и влажного термометров устанавливаются на определенных уровнях, по которьм с помощью специальных таблиц рассчи­тывается относительная влажность воз­духа.

Скорость движения воздуха измеря­ется с помощью анемометров (рис. 2.7). При скорости движения воздуха свыше 1 м/с используют крыльчатые или ча­шечные анемометры, при меньших скоростях — термоанемометры.

Принцип действия крыльчатого и чашечного анемометров — меха­нический. Под воздействием аэродинамической силы движущегося потока воздуха ротор прибора с закрепленными на нем крыльями (пластинками) начинает вращаться со скоростью, величина которой соответствует скорости набегающего потока. Через систему зубчатых колес ось соединена с подвижными стрелками. Центральная стрелка показывает единицы и десятки, стрелки мелких циферблатов — сотни и тысячи делений. С помощью расположенного сбоку рычага можно отключить ось от механизма зубчатых колес или подключить ее.

Перед измерением за­писывают показания ци­ферблатов при отключен­ной оси. Прибор устанав­ливают в точке измере­ния, и ось с закреплен­ными на ней крыльями начинает вращаться. По секундомеру засекают время и включают при­бор. Через 1 мин движе­нием рычага ось отклю­чают и снова записывают показания. Разность по­казаний прибора делят на 60 (число секунд в минуте) для определения скорости вращения стрелки — ко­личества проходимых ею делений за 1 с. По найден­ной величине с помощью прилагаемого к прибору графика определяют скорость движения воздуха в секунду.

Для измерения малых скоростей движения воздуха используют термоанемометр, который позволяет также определять температуру воздуха. Принцип измерения основан на изменении электрического сопротивления чувствительного элемента прибора при изменении температуры и скорости воздуха. По величине электрического тока, измеряемого гальванометром, определяют с помощью таблиц скорость движения потока воздуха.

ОСВЕЩЕНИЕ

 

Основные светотехнические характеристики. Ощущение зрения происходит под воздействием света, которое представляет собой элек­тромагнитное излучение с длиной волны 0,38...0,76 мкм. Чувствитель­ность зрения максимальна к электромагнитному излучению с длиной волны 0,555 мкм (желто-зеленый цвет) и уменьшается к границам видимого спектра.

Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся:

световой поток Ф — часть лучистого потока, воспринимаемая че­ловеком как свет; характеризует мощность светового излучения, изме­ряется в люменах (лм);

сила света J — пространственная плотность светового потока; оп­ределяется как отношение светового потока Аф, исходящего от источника и равномерно распространяющегося внутри элементарного те­лесного угла АО, к величине этого угла; /=ДФ/ДО; измеряется в канделах (кд);

освещенность Е — поверхностная плотность светового потока; оп­ределяется как отношение светового потока ЛФ, равномерно падаю­щего на освещаемую поверхность, к ее площади \82); Е= ДФ/А5;

измеряется в люксах (лк);

яркость L поверхности под углом а к нормали — это отношение силы света Ja, излучаемой, освещаемой или светящейся поверхностью в этом направлении, к площади S проекции этой поверхности, на плоскость, перпендикулярную к этому направлению; L = J (Д5со8к) измеряется в кд • м 2.

Для качественной оценки условий зрительной работы используют такие показатели как фон, контраст объекта с фоном, коэффициент пульсации освещенности, спектральный состав света.

Фон — это поверхность, на которой происходит различение объек­та. Фон характеризуется способностью поверхности отражать падаю­щий на нее световой поток. Эта способность (коэффициент отражения р) определяется как отношение отраженного от поверхности светового потока Фотр к падающему на нее световому потоку Фпад; р = Фотр/Фпая. В зависимости от цвета и фактуры поверхности значения коэффици­ента отражения находятся в пределах 0,02...0,95; при р > 0,4 фон считается светлым; при р = 0,2...0,4 — средним и при р < 0,2 — тем­ным.

Контраст объекта с фоном к — степень различения объекта и фо­на — характеризуется соотношением яркостей рассматриваемого объ­екта (точки, линии, знака, пятна, трещины, риски или других элемен­тов) и фона; /с = (Ьор—Ьо)/Ьор считается большим, если к > 0,5 (объект резко выделяется на фоне), средним при к =0,2...0,5 (объект и фон заметно отличаются по яркости) и малым при к < 0,2 (объект слабо заметен на фоне).

Коэффициент пульсации освещенности ке — это критерий глубины колебаний освещенности в результате изменения во времени светового потока:

где E max, E min, E ср максимальное, минимальное и среднее значения освещенности за период колебаний; для газоразрядных ламп 1се= =25...65 %, для обычных ламп накаливания K е= 7 %, для галогенных ламп накаливания K e = 1 %.

Системы и виды освещения. При освещении производственных помещений используют естественное освещение, создаваемое прямы­ми солнечными лучами и рассеянным светом небосвода и меняющимся в зависимости от географической широты, времени года и суток, степени облачности и прозрачности атмосферы; искусственное осве­щение, создаваемое электрическими источниками света, и совмещен­ное освещение, при котором недостаточное по норам естественное освещение дополняют искусственным.

Конструктивно естественное освещение подразделяют на боковое (одно- и двухстороннее), осуществляемое через световые проемы в наружных стенах; верхнее — через световые проемы в кровле и пере­крытиях; комбинированное — сочетание верхнего и бокового освеще­ния.

В учебных помещениях применяют боковое левостороннее естест­венное освещение. При ширине помещения более 6 м обязательно устраивать правосторонний подсвет. Направление основного светового потока спереди и сзади от учащихся не допускается.

Искусственное освещение по конструктивному исполнению может быть двух видов — общее и комбинированное. Систему общего освеще­ния применяют в помещениях, где по всей площади выполняются однотипные работы (литейные, сварочные, гальванические цехи), а также в административных, конторских и складских помещениях, в классах и аудиториях учебных заведений. Различают общее равномер­ное освещение (световой поток распределяется равномерно по всей площади без учета расположения рабочих мест) и общее локализован­ное освещение (с учетом расположения рабочих мест).

При выполнении точных зрительных работ (например, слесарных, токарных, контрольных) в местах, где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально (штампы, гильотинные ножницы), наряду с общим освещением при­меняют местное. Совокупность местного и общего освещения назы­вают комбинированным освещением. Применение одного местного освещения внутри производственных помещений не допускается, по­скольку образуются резкие тени, зрение быстро утомляется и создается опасность производственного травматизма.

По функциональному назначению искусственное освещение подразделяют на рабочее, аварийное и специальное, которое может быть охранным, дежурным, эвакуационным, эритемным, бактери­цидным и др.

Рабочее освещение предназначено для обеспечения нормального выполнения производственного процесса, прохода людей, движения транспорта и является обязательным для всех производственных по­мещений. Аварийное освещение устраивают для продолжения работы в тех случаях, когда внезапное отключение рабочего освещения (при авариях) и связанное с этим нарушение нормального обслуживания оборудования могут вызвать взрыв, пожар, отравление людей, наруше­ние технологического процесса и т. д. Минимальная освещенность рабочих поверхностей при аварийном освещении должна составлять 5 % нормируемой освещенности рабочего освещения, но не менее 2 лк.

Эвакуационное освещение предназначено для обеспечения эвакуации людей из производственного помещения при авариях и отключении рабочего освещения; организуется в местах, опасных для прохода людей: на лестничных клетках, вдоль основных проходов производст­венных помещений, в которых работают более 50 чел. Минимальная освещенность на полу основных проходов и на ступеньках при эваку­ационном освещении должна быть не менее 0,5 лк, на открытых территориях — не менее 0,2 лк. Охранное освещение устраивают вдоль границ территорий, охраняемых специальным персоналом. Наимень­шая освещенность в ночное время 0,5 лк. Сигнальное освещение при­меняют для фиксации границ опасных зон; оно указывает на наличие опасности, либо на безопасный путь эвакуации.

Основные требования к производственному освещению. Основной задачей производственного освещения является поддержание на рабо­чем месте освещенности, соответствующей характеру зрительной ра­боты.

При организации производственного освещения необходимо обес­печить равномерное распределение яркости на рабочей поверхности и окружающих предметах. Перевод взгляда с ярко освещенной на слабо освещенную поверхность вынуждает глаз переадаптироваться, что ве­дет к утомлению зрения и соответственно к снижению производитель­ности труда. Для повышения равномерности естественного освещения больших цехов и аудиторий учебных заведений осуществляется ком­бинированное и двухстороннее освещение. Согласно санитарным нор­мам неравномерность естественного освещения в учебных помещениях не должна превышать 3:1. Светлая окраска потолка, стен и оборудо­вания способствует равномерному распределению яркостей в поле зрения работающего. Поэтому для отделки стен и потолков учебных помещений применяют материалы и краски, создающие матовую поверхность с коэффициентом отражения 0,7—0,8 — для потолка и 0,5—0,6 — для стен.

Производственное освещение должно обеспечивать отсутствие в поле зрения работающего резких теней. Наличие резких теней искажает размеры и формы объектов различения и тем самым повышает утом­ляемость, снижает производительность труда. Особенно вредны дви­жущиеся тени, которые могут привести к травме.

Колебания освещенности на рабочем месте, вызванные, например, резким изменением напряжения всети, обусловливают переадаптацию глаза, приводя к значительному утомлению. Постоянство освещенно­сти во времени достигается стабилизацией плавающего напряжения, жестким креплением светильников, применением специальных схем включения газоразрядных ламп.

При организации производственного освещения следует выбирать необходимый спектральный состав светового потока. Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях для усиления цветовых контрастов. Оптимальный спектральный состав обеспечивает естественное освещение. Для со­здания правильной цветопередачи применяют монохроматический свет, усиливающий одни цвета и ослабляющий другие.

Осветительные установки должны быть удобны и просты в эксплу­атации, долговечны, отвечать требованиям эстетики, электробезопас­ности, а также не должны быть причиной возникновения взрыва или пожара. Обеспечение указанных требований достигается применением защитного зануления или заземления, ограничением напряжения пи­тания переносных и местных светильников, защитой элементов осве­тительных сетей от механических повреждений и т. п.

Правильно спроектированное и рационально выполненное осве­щение производственных помещений оказывает положительное пси­хофизиологическое воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность.

Требования к освещению в быту менее жесткие, чем на производ­стве. Согласно СНиП 23-05—95 освещенность в жилых комнатах и на кухнях должна быть не менее 50 лк. На лестничных клетках допускается освещенность менее 100 лк. В качестве искусственных источников света в бытовых условиях широко применяются лампы накаливания.

Нормирование производственного освещения. Естественное и искус­ственное освещение в помещениях регламентируется СНиП 23-05—95 в зависимости от характеристика зрительной работы, системы и вида осве­щения, фона, контраста объекта с фоном. Характеристика зрительной работы определяется наименьшим размером объекта различения (на­пример, при работе с приборами — толщиной линии градуировки шкалы, при чертежных работах — толщиной самой тонкой линии). В зависимости от размера объекта различения все виды работ, связанные со зрительным напряжением, делятся на восемь разрядов, которые в свою очередь в зависимости от фона и контраста объекта с фоном делятся на четыре подразряда.

Искусственное освещение нормируется количественными (мини­мальной освещенностью E min) и качественными показателями (пока­зателями ослепленности и дискомфорта, коэффициентом пульсации освещенности ^). Принято раздельное нормирование искусственного освещения в зависимости от применяемых источников света и системы освещения. Нормативное значение освещенности для газоразрядных ламп при прочих равных условиях из-за их большей светоотдачи выше, чем для ламп накаливания. При комбинированном освещении доля общего освещения должна быть не менее 10 % нормируемой освещен­ности. Эта величина должна быть не менее 150 лк для газоразрядных ламп и 50 лк для ламп накаливания.

В учебных кабинетах, аудиториях и лабораториях уровни освещен­ности на рабочих столах должны быть не менее 300 лк, на классной доске — не менее 500 лк, в кабинетах технического черчения и рисо­вания — не менее 500 лк, на столах дисплейных классов — 300—500 лк.

Естественное освещение характеризуется тем, что создаваемая ос­вещенность изменяется в зависимости от времени суток, года, метео­рологических условий. Поэтому в качестве критерия оценки естественного освещения принята относительная величина — коэффи­циент естественной освещённости КЕО, не зависящий от вышеуказан­ных параметров. КЕО — это отношение освещенности в данной точке внутри помещения Ет к одновременному значению наружной гори­зонтальной освещенности Ен, создаваемой светом полностью откры­того небосвода, выраженное в процентах, т. е. КЕО = 100 Евн /Ен. Величина КЕО для учебных помещений должна быть не менее 1,5 %.

Источники света и светильники. Источники света, применяемые для искусственного освещения, делят на две группы — газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источ­никам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра воз­никает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

При выборе и сравнении источников света друг с другом пользуются следующими параметрами: номинальное напряжение питания и (В);

электрическая мощность лампы Р (Вт); световой поток, излучаемый лампой Ф (лм), или максимальная сила света/От); световая отдача \у = Ф/Р (лм/Вт), т. е. отношение светового потока лампы к ее элект­рической мощности; срок службы лампы и спектральный состав света.

Благодаря удобству в эксплуатации, простоте в изготовлении, низкой инерционности при включении, отсутствии дополнительных пусковых устройств, надежности работы при колебаниях напряжения и при различных метеорологических условиях окружающей среды лампы накаливания находят широкое применение в промышленности. Наряду с отмеченными преимуществами лампы накаливания имеют и существенные недостатки: низкая световая отдача (для ламп общего назначения \у = 7...20 лм/Вт), сравнительно малый срок службы

 

(до 2,5 тыс. ч), в спектре преобладают желтые и красные лучи, что сильно отличает их спектральный состав от солнечного света.

Основным преимуществом газоразрядных ламп перед лампами накаливания является большая световая отдача 40...110 лм/Вт. Они имеют значительно больший срок службы, который у некоторых типов ламп достигает 8...12 тыс. ч. От газоразрядных ламп можно получить световой поток любого желаемого спектра, подбирая соответствующим образом инертные газы, пары металлов, люминофоры. По спектраль­ному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛЛД), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого цвета (ЛБ).

В качестве искусственных источников света в учебных помещениях рекомендуется использовать газоразрядные люминисцентные лампы типа ЛБ и ЛХБ.

Основным недостатком газоразрядных ламп является пульсация светового потока, что может привести к появлению стробоскопическо­го эффекта, заключающегося в искажении зрительного восприятия. При кратности или совпадении частоты пульсации источника света и обрабатываемых изделий вместо одного предмета видны изображения нескольких, искажается направление и скорость движения, что делает невозможным выполнение производственных операций и ведет к увеличению вероятности травматизма. К недостаткам газоразрядных ламп следует отнести также длительный период разгорания; необходи­мость применения специальных пусковых приспособлений, облегча­ющих зажигание ламп; зависимость работоспособности от температуры окружающей среды. Газоразрядные лампы могут создавать радиопоме­хи, исключение которых требует специальных устройств.

Создание в производственных помещениях качественного и эф­фективного освещения невозможно без рациональных светильников. Электрический светильник — это совокупность источника света и ос­ветительной арматуры, предназначенной для перераспределения излу­чаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Для характеристики светильника с точки зрения распределения светового потока в пространстве строят график силы света в полярной системе координат (рис. 2.8). Степень предохранения глаз работников от слепящего действия источника света определяют защитным углом светильника. Защитный угол — это угол между горизонталью, соеди­няющей нить накала (поверхность лампы) с противоположным краем отражателя (рис. 2.9). Важной характеристикой светильника является его коэффициент полезного действия — отношение фактического све­тового потока светильника Фф, к световому потоку помещенной в него лампы Ф„, т. е. Пев = Фф/Фп.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отра­женного и преимущественно отраженного света.

Расчет производственного освещения. При проектировании искус­ственного освещения необходимо выбрать тип источника света, сис­тему освещения, вид светильника; определить число светильников и мощность ламп, необходимых для создания нормируемой освещеннос­ти.

Расчет общего равномерного искусственного освещения горизон­тальной рабочей поверхности выполняется методом коэффициента использования светового потока. Световой поток (лм) одной лампы или группы люминесцентных ламп одного светильника

где Ен — нормируемая минимальная освещенность по СНиП 23-05—95, лк; 8 — площадь освещаемого помещения, м2; г — коэффициент не­равномерности освещения; обычно г = 1,1-1,2; к-^ — коэффициент запаса, зависящий от вида технологического процесса и типа приме­няемых источников света; обычно ^з= 1,3 - 1,8; я—число светиль­ников в помещении; т^и — коэффициент использования светового потока.

Коэффициент использования светового потока, давший название методу расчета, определяют по СНиП 23-05—95 в зависимости от типа светильника, отражательной способности стен и потолка, размеров помещения, определяемых индексом помещения:

где А и В — длина и ширина помещения в плане, м; Н— высота подвеса светильников над рабочей поверхностью, м.

 

По полученному в результате расчета световому потоку по ГОСТ 2239—79 и ГОСТ 6825—91 выбирают ближайшую стандартную лампу и определяют необходимую электрическую мощность. При выборе лампы допускается отклонение светового потока от расчетного в пределах 10...20 %.

Для поверочного расчета местного освещения, а также для расчета освещенности конкретной точки наклонной поверхности при общем локализованном освещении применяют точечный метод. В основу точечного метода положено уравнение

где Ел — освещенность горизонтальной поверхности в расчетной точке А, лк; /а — сила света в направлении от источника к расчетной точке А; определяется по кривой распределения светового потока выбирае­мого светильника и источника света; к—угол между нормалью к поверхности, которой принадлежит точка, и направлением вектора силы света в точку А; г— расстояние от светильника до точки А, м.

Учитывая, что г = Я/соха и вводя коэффициент запаса 1с.,, получим Ел = /аСов^ДЯ^з). Критерием правильности расчета служит неравен­ство Ел > Ей.

Контроль освещенности. Измерение освещенности производится люксметром (рис. 2.10). Он представляет собой переносной прибор, состоящий из светочувствительного фотоэлемента, измерительного 64

прибора и светопоглотительной насадки. Фотоэлемент — пластина, на поверхность которой нанесен светочувствительный слой, трансформи­рующий световую энергию в электрическую. При попадании на фото­элемент светового потока возникает электрический сигнал, который по проводам передается в электроизмерительный прибор, имеющий гальванометр с зеркальной шкалой. Величина возникающего электри­ческого тока пропорциональна интенсивности светового потока. Если на фотоэлемент надета насадка-поглотитель из молочного стекла, то световой поток, падающий на светочувствительный слой, ослабляется в 100 раз.

Прибор имеет три диапазона измерений: до 25; до 100 и до 500 лк (устанавливается специальным переключателем на корпусе прибора), а если на фотоэлемент надета насадка-поглотитель, то пределы изме­рений соответственно возрастают в 100 раз — до 2500, 10 000 и 50 000 лк. Если переключатель находится против цифры 25, то без насадки цена деления шкалы (имеет 50 делений) равна 25/50 = 0,4 лк, а с насадкой — в 100 раз больше, т. е. 40 лк. Соответственно в положении переключа­теля против цифры 100 цена деления равна 100/50 = 2 лк, а с насад­кой — 200 лк, и, наконец, в положении против цифры 500 она равна 500/50 = 10 лк, а с насадкой — 1000 лк.

Люксметр градуирован для ламп накаливания. При измерении освещенности люминесцентных ламп и естественной освещенности необходимо вводить поправочный коэффициент: для ламп дневного света — 0,9; для ламп белого света — 1,1; для естественного освеще­ния — приблизительно 0,8.

При выполнении измерений люксметр устанавливают горизонталь­но и проверяют положение стрелки. Она должна быть на нуле. Если стрелка отклонена, ее необходимо установить против нуля с помощью шлица под гальванометром.



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 571; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.37.178 (0.01 с.)