Нестационарный метод ( реверс-процесс). 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нестационарный метод ( реверс-процесс).



Реверс-процесс предусматривает периодическое изменение направлений фильтрации газовой смеси в слое катализатора с помощью специальных клапанов. Процесс протекаетследующим образом. Слой катализатора предварительно нагревают до температуры, при которой каталитический процесс протекает с высокой скоростью. После этого в аппарат подают очищенный газ с низкой температурой, при которой скорость химического превращения пренебрежимо мала. От прямого контакта с твердым материалом газ нагревается, и в слое катализатора начинает с заметной скоростью идти каталитическая реакция. Слой твердого материала (катализатора), отдавая тепло газу, постепенно охлаждается до температуры, равной температуре газа на входе. Поскольку в ходе реакции выделяется тепло, температура в слое может превышать температуру начального разогрева. В реакторе формируется тепловая волна, которая перемещается в направлении фильтрации реакционной смеси, т.е. в направлении выхода из слоя. Периодическое переключение направления подачи газа на противоположное позволяет удержать тепловую волну в пределах слоя как угодно долго.

Преимущество этого метода в устойчивости работы при колебаниях концентраций горючих смесей и отсутствие теплообменников.

Основным направлением развития термокаталитических методов является создание дешевых катализаторов, эффективно работающих при низких температурах и устойчивых к различным ядам, а также разработка энергосберегающих технологических процессов с малыми капитальными затратами на оборудование. Наиболее массовое применение термокаталитические методы находят при очистке газов от оксидов азота, обезвреживании и утилизации разнообразных сернистых соединений, обезвреживания органических соединений и СО.

Для концентраций ниже 1 г/м³ и больших объемов очищаемых газов использование термокаталитического метода требует высоких энергозатрат, а также большого количества катализатора.

Озонные методы.

Озонные методы применяют для обезвреживания дымовых газов от SO2(NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%)составляет 0,4 – 0,9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4,5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода.

Применение озона для дезодорации газовых выбросов основано на окислительном разложении дурно пахнущих веществ. В одной группе методов озон вводят непосредственно в очищаемые газы, в другой газы промывают предварительно озонированной водой. Применяют также последующее пропускание озонированного газа через слой активированного угля или подачуего на катализатор. При вводе озона и последующем пропускании газа через катализатор температура превращения таких веществ как амины, ацетальдегид, сероводород и др.понижается до 60-80 &degC. В качестве катализатора используют как Pt/Al2O3, так и оксиды меди, кобальта, железа на носителе. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо- (жиро-)комбинатах и в быту.

Биохимические методы.

Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. При частом изменении состава газа микроорганизмы не успевают адаптироваться для выработки новых ферментов, и степень разрушения вредных примесей становится неполной. Поэтому биохимические системы более всего пригодны для очистки газов постоянного состава.

Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.

Микроорганизмы БП в процессе своей жизнедеятельности поглощают и разрушают содержащиеся в газовой среде вещества, в результате чего происходит рост их массы. Эффективность очистки в значительной мере определяется массопереносом из газовой фазы в БП и равномерным распределением газа в слое насадки. Такого рода фильтры используют, например, для дезодорации воздуха. В этом случае очищаемый газовый поток фильтруется в условиях прямотока с орошаемой жидкостью, содержащей питательные вещества. После фильтра жидкость поступает в отстойники и далее вновь подается на орошение.

В настоящее время биофильтры используют для очистки отходящих газов от аммиака, фенола, крезола, формальдегида, органических растворителей покрасочных и сушильных линий, сероводорода, метилмеркаптана и других сероорганических соединений.

К недостаткам биохимических методов следует отнести:

низкую скорость биохимических реакций, что увеличивает габариты оборудования;

специфичность (высокую избирательность) штаммов микроорганизмов, что затрудняет переработку многокомпонентных смесей;

трудоемкость переработки смесей переменного состава.

Плазмохимические методы.

Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных,коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Недостатком данного метода являются:

недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлимых энергиях разряда

наличие остаточного озона, который необходимо разлагать термически либо каталитически

существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

Плазмокаталитический метод

Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 &degC), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м³.).

Недостатками данного метода являются:

большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,

при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

Фотокаталитический метод.

Сейчас широко изучается и развивается фотокаталитический метод окисления органических соединений. В основном при этом используются катализаторы на основе TiO2, которые облучаются ультрафиолетом. Известны бытовые очистители воздуха японской фирмы «Daikin», использующие этот метод. Недостатком метода является засорение катализатора продуктами реакции. Для решения этой задачи используют введение в очищаемую смесь озона, однако данная технология применима для ограниченного состава органических соединений и при небольших концентрациях.

28. Классификация помещений по взрывопожарной и пожарной опасности

Проектирование и эксплуатация всех промышленных предприятий (кроме предприятий по изготовлению взрывчатых веществ, имеющих свои особые условия, нормы и правила) регламентируются "Строительными нормами и правилами" (СНиП 2.01.02-85), "Правилами устройства электроустановок" (ПУЭ-86), "Типовыми правилами пожарной безопасности для промышленных предприятий", "Общесоюзными нормами технологического проектирования" (ОНТП 24-86), а также нормами пожарной безопасности РБ "Категорирование помещений, зданий и наружных установок по взрывопожарной и пожарной опасности. НПБ 5-2000".

В соответствии с НПБ 5-2000, помещения и здания подразделяются по взрывопожарной и пожарной опасности на категории А, Б, В1, В2, В3, В4, Г1, Г2 и Д. Указанные категории следует применять для установления нормативных требований по обеспечению взрывопожарной и пожарной безопасности помещений и зданий в отношении планировки и застройки, этажности, площадей, разме-щения помещений, конструктивных решений, инженерного оборудования.

Категории взрывопожарной и пожарной опасности помещений и зданий определяются для наиболее неблагоприятного в отношении пожара или взрыва периода исходя из вида находящихся в аппаратах и помещениях горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

Определение пожароопасных свойств веществ и материалов производится на основании результатов испытаний или расчетом по стандартным методикам с учетом параметров со-стояния (давления, температуры и т.д.).

Определение категорий помещений следует осуществлять путем последовательной проверки принадлежности их к категориям начиная от высшей (А) к низшей (Д). Категории помещений приведены в табл.

Категория

помещения Характеристика веществ и материалов,

находящихся (обращающихся) в помещении

А – взры-

вопожаро-опасная Горючие газы (ГГ), легковоспламеняющиеся жидкости (ЛВЖ) с температурой вспышки не более 28оС в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа.

Б – взрыво-пожаро-опасная Горючие пыли или волокна, ЛВЖ с температурой вспышки более 28оС, горючие жидкости (ГЖ) в таком количестве, что могут образовывать взрывоопасные пылевоздушные и паровоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.

В1-В4 – пожаро-опасные ГЖ и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б.

Г1

 

Г2 Процессы, связанные со сжиганием в качестве топлива ГГ и ЛВЖ.

Негорючие вещества и материалы в горячем раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени. Процессы, связанные со сжиганием в качестве топлива ГЖ, а также твердых горючих веществ и материалов.

Д Негорючие вещества и материалы в холодном состоянии.

 

Определение пожароопасной категории В1-В4 помещения осуществляется путем сравнения максимального значения удельной временной пожарной нагрузки (далее по тексту – пожарная нагрузка) на любом из участков с величиной удельной пожарной нагрузки.

После определения категории помещений (участков) можно оценить категорию всего здания по взрывопожарной и пожарной опасности.

1. Здание относится к категории А, если в нем суммарная площадь помещений категории А превышает 5 % площади всех помещений, или 200 м2.

Допускается не относить здание к категории А, если суммарная площадь помещений категории А в здании не превыша-ет 25 % суммарной площади всех размещенных в нем помеще-ний (но не более 1000 м2) и эти помещения оборудуются установками автоматического пожаротушения.

2. Здание относится к категории Б, если одновременно выполнены два условия:

– здание не относится к категории А;

– суммарная площадь помещений категорий А и Б превы-шает 5 % суммарной площади всех помещений, или 200м.

Допускается не относить здание к категории Б, если сум-марная площадь категорий А и Б в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 1000 м2) и эти помещения оборудуются установками автоматического пожаротушения.

3. Здание относится к категории В (В1-В4), если одновременно выполнены два условия:

– здание не относится к категории А или Б;

– суммарная площадь помещений категорий А, Б и В пре-вышает 5 % (10 %, если в здании отсутствуют помещения категорий А и Б) суммарной площади всех помещений.

Допускается не относить здание к категории В, если суммарная площадь помещений категорий А, Б и В в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 3500 м2) и эти помещения оборудуются установками автоматического пожаротушения.

4. Здание относится к категории Г (Г1-Г2), если одновременно выполнены два условия:

– здание не относится к категории А, Б или В;

– суммарная площадь помещений категорий А, Б,В и Г превышает 5 % суммарной площади всех помещений.

Допускается не относить здание к категории Г, если суммарная площадь помещений категорий А, Б,В и Г в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 5000 м2).

5. Здание относится к категории Д, если оно не относится к категориям А, Б, В или Г.

Правильный выбор категории помещений и зданий имеет первостепенное значение при проектировании и эксплуатации объектов, связанных с обращением огнеопасных жидкостей, так как позволяет определить основные требования к генеральному плану, конструкции производственных зданий и расположению в них оборудования, к вентиляции, исполнению электрооборудования и др. В конечном итоге это дает возможность установить оптимальные соотношения между безопасностью производства и размером капитальных вложений на строительство и эксплуатацию объектов.

Предприятия лесной и деревообрабатывающей промышленности относятся в основном к категории В. Основанием для отнесения их к этой категории является то, что производственный процесс этих предприятий связан с наличием и обработкой твердых сгораемых материалов при незначительном запылении воздушной среды древесной пылью (менее нижнего предела взрываемости). Например, к категории В относятся следующие цехи, отделения, помещения, участки работ.

Лесозаготовительная промышленность: помещения лесопильных рам и шпалорезных станков; участки рубильных машин, дробления древесины и сортировки щепы; тарные цехи; помещения по раскрою сырья, деревообработке и комплектовке; цех технологической щепы; участки подготовки сырья, окорки, дробления и сортировки щепы.

Лесопильная промышленность: лесопильные цехи; стационарные транспортные устройства для пиловочного сырья и пиломатериалов; окорочные цеха; помещения основного производства 1 и 2-го этажей; участок окорки; бункера для щепы, опилок и кусковых отходов лесопиления и деревообработки; сушильно-деревообрабатывающий цех; сушильное отделение, раскроечно-строгальное отделение.

Производство древесностружечных плит: цех подготовки сырья; цех приготовления стружки; сушильное отделение; формовочное прессовое отделение; отделение поточной линии обрезки, шлифовки и сортировки плит.

Производство мебели: отделение раскроя и стяжки строганного шпона; отделение раскроя древесностружечных плит; отделение облицовывания щитовых деталей; отделение машинной обработки мебельных деталей; участок шлифования мебельных деталей, размещенный в общем помещении машинной обработки; сборочный цех.

К категории А относятся:

Производство мебели: отделения лакирования и сушки; лако-заготовительное отделение; лаборатория с отделочными материалами; отделения крашения, грунтования при размещении в отдельном помещении; отделения выдержки стульев после отделки, склад хранения лакокрасочных материалов.

Производство кузовов: отделение изготовления армодосок; отделка древесностружечных плит методом ламинирования; отделение пропитки бумаги смолами; отделение печатания текстуры; отделение приготовления печатных красок.

Производство фанеры: склад спирторастворимых фенол-формальдегидных смол.

Производство древесно-слоистых пластиков: цехи приго-товления смолы, пропитки и сушки шпона.

Производство древесноволокнистых плит (ДВП): цех отделки ДВП лакокрасочными материалами и сушка их; лакокраско-приготовительное отделение; склад хранения, лакокрасочных материалов.

29. Виды систем пожаротушения по способу тушения

В зависимости от технологии тушения пожара выделяют объемное, поверхностное, локально-объемное и локально-поверхностное пожаротушение.

 

Объемное пожаротушение подходит для закрытых помещений, в которых утечка воздуха сравнительно небольшая. Специфика этого метода состоит в том, что сначала преграждают доступ воздуха в помещение, а затем распределяют огнетушащее вещество по всему объему. Современные автоматические системы пожаротушения для объемного пожаротушения применяют инертные газы, хладоны, газоаэрозольные составы и другие вещества, которые способны рассеиваться в воздухе и обеспечивать концентрацию, нужную для того, чтобы загасить огонь.

Поверхностный способ подразумевает иной подход: в этом случае огонь изолируют от воздуха при помощи специально предназначенных для этого веществ. Применяемые при поверхностном способе установки пожаротушения позволяют наносить огнегасительные средства на очаг горения, предупреждая контакт поверхности с кислородом из окружающей атмосферы.

При локально-объемном способе установки пожаротушения воздействуют лишь на небольшую часть помещения, обеспечивая ликвидацию огня на отдельных участках. При локально-поверхностном способе автоматические системы пожаротушения защищают ограниченную площадь поверхности.

Установки пожаротушения по степени автоматизации

По степени автоматизации процесса тушения пожара принято различать автоматическое, автоматизированное и ручное пожаротушение.

Автоматизированные и автоматические установки пожаротушения часто путают, поскольку они имеют много общих свойств: оба варианта предназначены для того, чтобы обнаружить опасность и в максимально короткий срок ликвидировать очаг возгорания. Однако существует принципиальное отличие: если автоматические установки пожаротушения, зафиксировав признаки возгорания, самостоятельно начинают работать и тушить огонь, то автоматизированные системы пожаротушения, отметив повышение температуры воздуха или задымление, просто подают сигнал тревоги. Самостоятельно включиться они не могут, необходимо присутствие человека, который бы привел установку в действие. Автоматические и автоматизированные системы пожаротушения, устанавливаемые ООО НПО «СОКЛА», обеспечивают максимальную защиту имущества до того момента, когда приезжает пожарный расчет, а в большинстве случаев они полностью ликвидируют огонь.

Успех при применении ручных установок полностью зависит от того, насколько своевременно человек обнаруживает возгорание и насколько эффективно он может контролировать пожаротушение. Здесь значение человеческого фактора максимально, а потому ручные установки считаются наименее эффективным. Между тем установка систем пожаротушения ручного типа вполне приемлема для дополнительной защиты объектов.

30. Техногенные чрезвычайные ситуации

Техногенные ЧС наносят значительный экологический ущерб в результате масштабного загрязнения поверхностных и подземных вод, почв, биоты, атмосферного воздуха опасными для окружающей среды веществами, а также гибели животных и растений, деградации экосистем.

Техногенная ЧС или авария - это экстремальное событие техногенного происхождения или являющееся следствием случайных или преднамеренных внешних воздействий, приведшее к выходу из строя, повреждению и (или) разрушению технических устройств, транспортных средств, зданий, сооружений и (или) к человеческим жертвам. Аварии по особенностям воздействия поражающих факторов на людей, окружающую природную среду и объекты экономики подразделяются на аварии, сопровождающиеся выбросами опасным веществ, пожарами, взрывами, затоплениями, нарушениями систем жизнеобеспечения (энергосистем, инженерных, технологических сетей и т.п.), обрушениями сооружений, крушениямй транспортных средств.

 

Классификация техногенных ЧС:

1. ТРАНСПОРТНЫЕ АВАРИИ (КАТАСТРОФЫ):

- аварии товарных поездов; аварии пассажирских поездов, поездов метрополитена; аварии речных и морских грузовых судов; аварии (катастрофы) речных и морских пассажирских судов; авиакатастрофы в аэропортах, населенных пунктах; авиакатастрофы вне аэропортов, населенных пунктов; аварии (катастрофы) на автодорогах (крупные автомобильные); аварии транспорта на мостах, железнодорожных переездах, тоннелях; аварии на магистральных трубопроводах.

2. ПОЖАРЫ, ВЗРЫВЫ, УГРОЗА ВЗРЫВОВ:

- пожары (взрывы) в зданиях, на коммуникациях и технологическом оборудовании промышленных объектов; пожары (взрывы) на объектах добычи, переработки и хранения легковоспламеняющихся, горючих и взрывчатых веществ; пожары (взрывы) на транспорте; пожары (взрывы) в шахтах, подземных и горных выработках, метрополитенах; пожары (взрывы) в зданиях и сооружениях жилого, социально-бытового, культурного назначения; пожары (взрывы) на химически опасных объектах; пожары (взрывы) на радиационно опасных объектах; обнаружение неразорвавшихся боеприпасов; утрата взрывчатых веществ (боеприпасов).

3. АВАРИИ С ВЫБРОСОМ (УГРОЗОЙ ВЫБРОСА) ХИМИЧЕСКИ ОПАСНЫХ ВЕЩЕСТВ:

- аварии с выбросом (угрозой выброса) ХОВ при их производстве, переработке, хранении (захоронении); аварии на транспорте с выбросом (угрозой выброса) ХОВ; образование и распространение ХОВ в процессе химических реакций, начавшихся в результате аварии; аварии с химическими боеприпасами; утрата источников ХОВ.

4. АВАРИИ С ВЫБРОСОМ (УГРОЗОЙ ВЫБРОСА) РАДИОАКТИВНЫХ ВЕЩЕСТВ:

- аварии на АЭС, атомных энергетических установках производственного и исследовательского назначения с выбросом (угрозой выброса) РВ; аварии с выбросом (угрозой выброса) РВ на предприятиях ядерно- топливного цикла; аварии транспортных средств и космических аппаратов с ядерными установками или грузом РВ на борту; аварии при промышленных и испытательных ядерных взрывах с выбросом (угрозой выброса) РВ; аварии с ядерными боеприпасами в местах их хранения, эксплуатации или установки; утрата радиоактивных источников.

5. АВАРИИ С ВЫБРОСОМ (УГРОЗОЙ ВЫБРОСА) БИОЛОГИЧЕСКИ ОПАСНЫХ ВЕЩЕСТВ: аварии с выбросом (угрозой выброса) БОВ на предприятиях и в научно-исследовательских учреждениях (лабораториях); аварии на транспорте с выбросом (угрозой выброса) БОВ; утрата БОВ.

6. ВНЕЗАПНОЕ ОБРУШЕНИЕ ЗДАНИЙ, СООРУЖЕНИЙ:

- обрушение элементов транспортных коммуникаций; обрушение производственных зданий и сооружений; обрушение зданий и сооружений жилого, социально-бытового и культурного назначения.

7. АВАРИИ НА ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМАХ:

- аварии на автономных электростанциях с долговременным перерывом электроснабжения всех потребителей; аварии на электроэнергетических системах (сетях) с долговременным перерывом электроснабжения основных потребителей или обширных территорий; выход из строя транспортных электроконтактных сетей.

8. АВАРИИ НА СИСТЕМАХ КОММУНАЛЬНОГО ОБЕСПЕЧЕНИЯ:

- аварии на канализационных системах с массовым выбросом загрязняющих веществ; аварии на тепловых сетях (системах горячего водоснабжения) в холодное время года; аварии в системах снабжения населения питьевой водой; аварии на коммунальных газопроводах.

9. АВАРИИ НА ОЧИСТНЫХ СООРУЖЕНИЯХ:

- аварии на очистных сооружениях сточных вод промышленных предприятий с массовым выбросом загрязняющих веществ; аварии на очистных сооружениях промышленных газов с массовым выбросом загрязняющих веществ.

10. ГИДРОДИНАМИЧЕСКИЕ АВАРИИ:

- прорывы плотин (дамб, шлюзов, перемычек и др.) с образованием волн прорыва и катастрофических затоплений; прорывы плотин (дамб, шлюзов, перемычек и др.) с образованием прорывного паводка; прорывы плотин (дамб, шлюзов, перемычек и др.), повлекшие смыв плодородных почв или отложение наносов на обширных территориях.

Биолого-социальная чрезвычайная ситуация - обстановка на определенной территории или акватории, сложившаяся в результате возникновения широко распространенной инфекционной болезни людей, сельскохозяйственных животных или растений, при которой может возникнуть или возникла угроза жизни и здоровью людей, животных, могут быть уничтожены или пострадать природные и сельскохозяйственные угодья и причинен значительный экономический ущерб.

Залогом обеспечения биологической безопасности служит соблюдение правовых норм, выполнение санитарно-гигиенических и санитарно-эпидемиологических правил, технологических и организационно-технических требований, а также проведение соответствующего комплекса правовых, санитарно-гигиенических, санитарно-эпидемиологических, организационных и технических мероприятий, направленных на предотвращение, ослабление и ликвидацию заражения людей, сельскохозяйственных животных и растений инфекционными болезнями.



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 325; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.66.206 (0.052 с.)