Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Полиэтилентерефталат – лавсан.Содержание книги Поиск на нашем сайте Продукт прямой поликонденсации терефталевой кислоты и этиленгликоля (или окиси этилена)
(-ОС-С6Н4-СО-ОС2Н4О-)n
Лавсан устойчив к действию неорганических реагентов в диапазоне рН=(1…10), кроме окислителей. Также устойчив к протонным органическим средам. Волокна из лавсана используют для изготовления фильтровальных полотен. Особо ценны лавсановые плёнки, применяемые в качестве ультрафильтровальных мембран. материалов Эпоксидные смолы. Продукты поликонденсации жирноароматических эпоксидов с алифатическими или ароматическими полиаминами. Отличаются высокой прочностью, но, как правило, жёстки и хрупки. Превосходные клеи. Стойки к большинству неорганических реагентов, в т.ч., к окислителям. Также стойки к углеводородам, спиртам, карбоновым кислотам. Эпоксидные смолы очень широко применяют в качестве универсальных клеев и антикоррозионных покрытий, а также в качестве связующего при изготовлении ударопрочных слоистых пластиков.
КАУЧУКИ И ЭЛАСТОМЕРЫ. Каучуки – продукты полимеризации 2-R-1,3-бутадиенов [R= H (бутадиен); Cl (хлоропрен); Me(изорпрен)] или сополимеризации их с замещёнными этиленами (изобутен; акрилонитрил, стирол). Принципиальная структурная особенность каучуков – сохранение в макромолекуле этиленовых фрагментов; кроме того, эта особенность даёт возможность синтеза стереорегулярных структур: все-транс (типа натурального каучука) или все-цис (типа гуттаперчи) (-СН2-СН=СR-СН2-)N - монополимеры (-СН2-СН=СR-СН2- СН2- СR'-)N - сополимеры
Эластомеры – продукты вулканизации каучуков - реакции с серой и оксидами металлов при температурах (150…200) ОС. Таблица 4 – Типы вулканизованных материалов
Специфичность структуры сообщает каучукам и эластомерам уникальную эластичность и упругость. Каучуки и резины обладают хорошей адгезией к металлам. Стойки к действию большинства неорганических реагентов, в т.ч., к окислителям – кроме галогенов и галогенангидридов. Также стойки к спиртам, карбоновым кислотам; нестойки к углеводородам, алкил- и арилгалогенидам. Диапазон рабочих температур от (-30) до (100…150) ОС. Особое место в этом классе материалов занимают т.н. силиконовые каучуки - полидиалкилсилоксаны общей формулы [O-SiR2-O-]N. Кремнийорганические полимеры отличаются не только высокой прочностью и упругостью, но и уникальной, сопоставимой с фторопластами – химической стойкостью к действию почти всех агентов. Диапазон рабочих температур: от (-60) до (200…300) ОС. Каучуки и резины в основном применяют для изготовления уплотнительных деталей оборудования, шлангов, труб, а также в качестве клеев и герметиков. Важнейший аспект – использование в качестве защитных покрытий стальной аппаратуры: реакторов, сосудов, фильтров, центрифуг, труб. Защита резиновыми покрытиями называется гуммированием. Гуммируемые детали обкладываеют листами сырой резины и вулканизуют в среде острого пара или воздуха при температуре порядка 150 ОС. Гуммированное оборудование работоспособно при температурах до 100 ОС в неабразивных средах.
УГЛЕРОДНЫЕ (ГРАФИТОВЫЕ) МАТЕРИАЛЫ – УГЛЕПЛАСТЫ. Из четырёх известных в настоящее время аллотропных форм углерода – сажи, фуллерена, графита и алмаза лишь графит нашёл широкое применение в химическом машиностроении. Графит – основная форма существования углерода. Характеризуется sp2-гибридизованными связями. Структура – слоистая. Плотность 2265 кг/м3. Является одним из стандартных, базовых веществ химической термодинамики: DHO=DGOº0. Теплоёмкость Ср=8,54 Дж/моль.К. Отличается уникальной тугоплавкостью: ТСУБЛ» 3700 ОС. Как металлы, графит электропроводен; отличается также высокой (электронной) теплопроводностью: l.» 90 Вт/м.К. Уникальна также химическая стойкость графита – по существу. он разрушается только концентрированной серной кислотой и фтором. Недостаток графита – хрупкость. Поэтому в основном используют графитопласты – композиции графита с фенопластами (в основном – фаолитом и бакелитом) Из графитопластов изготавливают корпуса и лопатки химических насосов; трубы; уплотнительные детали, детали пар скольжения; электроды и корпуса электролизёров; теплообменники для работы в среде паров галогенов и гидрогалогенидов.
КОРРОЗИЯ И АНТИКОРРОЗИОННАЯ ЗАЩИТА ХИМИЧЕСКОГО ОБОРУДОВАНИЯ КОРРОЗИЯ Коррозия – явление структурного разрушения конструкционных материалов и элементов технических систем под воздействием комплекса химических, биохимических, физических (электрических, деформационных, термичес-ких, вибрационных, радиационных) факторов окружающей среды – природной или техногенной. (Очевидно, что явления преднамеренного разрушения к коррозии не относятся). Коррозия – едва ли не единственное явление, которое в технике считается совершенноым злом, поскольку практически невозможно использовать его в созидательных целях. Коррозия – явление многообразное и чрезвычайно сложное. Непременным и первостепенным фактором, вызывающим коррозию, являются многообразные химические процессы. Видов и механизмов коррозии чрезвычайно много; в данном курсе будут рассмотрены (увы, крайне поверхностно) только наиболее характерные для химической аппаратуры. Типичные виды коррозии Следует отметить, что коррозия проявляется принципиально в двух формах. 1. Нарушение макроструктуры материала, приводящее к потере прочности. Сюда можно отнести такие явления как набухание полимеров во многих органических средах; межкристаллитное растрескивание сплавов (в первую очередь, сталей), бетонов и иных микрокристаллических материалов; растрескивание слоистых материалов (пластиков, древесины); водородная хрупкость сталей, вызываемая насыщением сплава гидридами металлов. Это вид коррозии весьма опасен, поскольку зачастую видимые эффекты разрушения отсутствуют, даже когда прочность материала критически уменьшена. 2. Явное разрушение материала с исчезновением вещества. Этот эффект традиционно определяет как коррозию. Основные механизмы коррозии. Наиболее распространены следующие механизмы коррозии. Химическая. В строгом смысле слова это те виды коррозии, где отсутствуют другие сопутствующие факторы: электрическое поле, механические напряжения материала и т.д. Многообразные процессы, протекающие в агрессивных средах. В МЕТАЛЛАХ И ИХ СПЛАВАХ – это в первую очередь окислительные реакции. Особо здесь можно отметить уже упомянутую выше водородную коррозию, крайне опасную для сталей и чугунов. Действие водорода, особенно при температурах свыше 300 ОС и давлениях порядка 20 МПа выражается в двух процессах: - дезкарбонизация (обезуглероживание) вследствие образования метана ССПЛАВ + 2Н2 ® СН4 этот эффект приводит к восстановлению карбидов FeXCY до чистого железа, прочность которого много ниже. - образование гидридов (наводороживание) М + Н2® М-… Н2+ ещё более опасный эффект, делающий материал хрупким. В СИЛИКАТНЫХ МАТЕРИАЛАХ – наиболее характерны реакции замещения при действии: фтора и его соединений; концентрированных щелочей; концентрированной ортофосфорной кислоты. В ПОЛИМЕРНЫХ МАТЕРИАЛАХ (пластмассах, каучуках, резинах)– также наиболее характерны реакции замещения при действии галогенов, азотной кислоты, органических галогенангидридов, кислорода, серы. Электрохимическая. Специфический вид коррозии, характерный для электропроводящих материалов – в первую очередь, металлов. Выделяют две разновидности ЭХК. 1. Контактная. Всегда может возникать в парах металлов с различными стандартными редокс-потенциалами при взаимодействии таких пар с проводящей средой, особенно водной. Явление крайне опасно для металлических защитных покрытий (оцинковки, лужения, никелирования, хромирования) при их механическом повреждении. 2. Коррозия под напряжением. Возникает при наложении внешнего электрического поля – как постоянного, так и переменного. Проявляется в наибольшей мере в электрохимической аппаратуре; в “обычных” (неэлектрохимических) процессах вызывается блуждающими токами и разрядами статического электричества.
|
|||||||||||||
|
Последнее изменение этой страницы: 2016-09-19; просмотров: 321; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.141 (0.007 с.) |