Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Классификация фазовращателей.↑ Стр 1 из 4Следующая ⇒ Содержание книги Поиск на нашем сайте
Введение.
Представим себе высоконаправленную антенну, обеспечивающую связь с искусственным спутником Земли (ИСЗ). Такая антенна имеет остросфокусированный луч, точно направленный на объект связи. Примером такой антенны может служить наземная антенна станции «Орбита», которая использовалась в первых советских системах передачи телевидения и обеспечения многоканальной телефонной связи через ИСЗ. Эта антенна представляет собой параболический рефлектор диаметром порядка десяти метров. Для того чтобы осуществить слежение за объектом связи или радионаблюдения с помощью такой антенны, необходимо поворачивать всю эту довольно тяжелую механическую систему.
Очевидно, что во многих случаях нужна антенна, у которой направление луча не было бы связано с ориентацией всей антенны как механической конструкции. Нужна антенна с немеханическим движением луча или, другими словами, антенна с электронным сканированием. Под сканированием здесь понимается движение луча антенны, осуществляющее обзор пространства в заданном пространственном угле. Такая антенна нужна не только в системах связи с ИСЗ, но и в системе управления движением в районе большого аэропорта. Особую роль антенны с электронным сканированием играли и продолжают играть в системах противоракетной обороны (ПРО). С начала 90-х годов антенны с электронным сканированием стали объектом внимания автомобильных компаний. В этой связи такие антенны могут стать предметом массового спроса, как цветной телевизор или персональный компьютер. Сложившееся к настоящему времени техническое решение антенны с электронным сканированием представлено в виде решетки, в узлах которой расположены простейшие излучатели электромагнитной волны. Цепи питания этих излучателей организованы так, что излучение, испускаемое каждым излучателем, когерентно с излучением всех излучателей, в то время как фаза излучаемых волн изменяется по заданному закону.
Изменение распределения фаз на излучателях позволяет сформировать луч антенны в заданном направлении. Такая решетка излучателей с управляемым распределением фаз волн, излучаемых элементарными излучателями, получила название фазированной антенной решетки (ФАР). Таким образом, термины антенна с немеханическим движением луча, антенна с электронным сканированием или фазированная антенная решетка практически являются синонимами.
Идея, что лучом системы когерентных излучателей можно управлять, изменяя распределение фаз на излучателях, была высказана уже давно. Одна из первых антенн с немеханическим управлением диаграммой направленности была построена для трансатлантической радиотелефонной линии связи в 1937 году. Эта антенна, обладая довольно высокой направленностью, позволяла изменять направление приема лучей в вертикальной плоскости и таким путем выбирать направление прихода лучей, наименее ослабленных при отражении от ионосферы. Так как благодаря направленным свойствам антенны осуществлялся прием только одного отраженного луча, то резко уменьшались замирания сигнала. Эта антенна представляла собой систему ромбических антенн, расположенных вдоль прямой на участке длиной около 1,5 км. Управление диаграммой направленности осуществлялось изменением фазовых соотношений между токами в отдельных ромбах. Высокой скорости управления лучом системы ромбических антенн не требовалось. Развитие радиолокации поставило задачу управления диаграммой направленности антенны в течение интервалов времени,
измеряемых вначале миллисекундами, а затем микросекундами и даже долями микросекунды.
Насколько можно судить по известным публикациям, первая антенна с электронным сканированием для применения в радиолокации была осуществлена в Ленинградском электротехническом институте (ЛЭТИ) в 1955 году в группе под руководством проф. О. П. Орова (1914-1955). В основу принципа действия антенны было положено управление фазами волн в нескольких излучателях антенны с помощью фазовращателей, содержащих ферритовые элементы. Как раз в те годы в электронике различных частот началось широкое применение ферритов - железосодержащих окислов металлов, которые являются диэлектриками, но обладают магнитными свойствами, близкими к свойствам железа. Первая публикация о фазовращателе на основе феррита, предназначенном для применения в антенне с электронным сканированием, появилась в конце 1954 года. А публикации по самой антенне в 1956-1957 годах. Задача разработки антенны с электронным сканированием слагается из двух составных частей: 1)Ввыбор числа излучателей и конфигурации их размещения; 2) Разработка фазовращателей, управляющих фазой электромагнитной волны в излучателях.
Фазированные антенные решетки отличаются от АР включением в антенный тракт системы фазовращателей или коммутаторов, осуществляющей управление фазовым или амплитудно-фазовым распределением для электрического сканирования. Нашли применение различные схемы построения ФАР в зависимости от требований к системе. Пространственный способ возбуждения (называемый еще распределителем оптического типа) допускает два варианта антенн: отражательную ФАР (рис. 1) и проходную ФАР (рис. 2). Фидерный способ возбуждения (распределитель закрытого типа) допускает последовательное, параллельное, двоично-этажное (елочки) питание излучателей и фазовращателей и их комбинации. Находят применение гибридные антенны - совместное использование ФАР и антенн оптического типа. Сочетание радиолинзы с ФАР или применение направленных излучающих элементов ФАР (зеркал, подрешеток и т. д.) позволяет получить те же результаты: уменьшение числа управляемых фазовращателей при ограниченном секторе сканирования.
Сочетание линзы с ФАР расширяет сектор сканирования плоской ФАР. Одновременно с этим происходит ухудшение других характеристик антенной системы.Цилиндрическая решетка излучателей, подключаемая коммутаторами (с фазовращателями или без них) к возбуждающей системе полосковых линий, волноводов, радиальных волноводов и других элементов, позволяет сканировать в широком секторе углов. Возможно применение многолучевых антенн, формирующих с одного излучающего раскрыва несколько ДН, каждой из которых соответствует входной тракт антенны. Многоканальный коммутатор, подключенный к входам многолучевой антенны, позволяет дискретно перемещать луч в пространстве в соответствии с характеристиками многолучевой антенны. Необходимость использования многолучевого режима в радиотехнических системах приводит к созданию ФАР с несколькими независимыми сканирующими лучами. Возможный путь решения таких задач состоит в совмещении многолучевых антенн с системой управляемых фазовращателей и возбуждаемых через направленные ответвители магистральных волноводов. Каждая из приведенных схем построения ФАР имеет свои преимущества и недостатки, и выбор той или иной схемы определяется поставленными требованиями к радиотехнической системе, последующей обработкой СВЧ-сигнала, а также элементной базой.
Элементная база ФАР включает: излучатели, фазовращатели, коммутаторы, сумматоры (делители) мощности и линии передач СВЧ. Центральным элементом - "кирпичиком", из которого строится ФАР. Служит фазовращатель. Его важнейшими характеристиками являются мощности потерь, управления и предельно допустимая рабочая полоса частот, быстродействие, зависимость фазового сдвига от управляющего воздействия, габариты и стоимость. Волноводное, коаксиальное, полосковое, микрополосковое исполнение фазовращателя определяет выбор не только тракта СВЧ, но и тип излучателя. В диапазоне СВЧ нашли широкое применение полупроводниковые (p-i-n-диодные) и ферритовые фазовращатели, которые принято разделять на проходные или отражательные, взаимные и невзаимные, дискретные или плавные, с памятью фазового сдвига и без запоминания.
Проходной фазовращатель - это четырехполюсное согласованное устройство СВЧ, вносящее дополнительный фазовый сдвиг от 0 до 360° - в зависимости от управляющего сигнала. Отражательный фазовращатель - это двухполюсное устройство (короткозамкнутый отрезок лини СВЧ), у которого фаза отраженной волны также управляется. Короткое замыкание выходных клемм в проходном фазовращателе преобразует его в отражательный. Отражательный фазовращатель может быть преобразован в проходной за счет применения мостового устройства. Взаимный фазовращатель обладает одинаковым вносимым фазовым сдвигом при прямом и обратном направлении распространения волны, невзаимный этим свойством не обладает. Невзаимный фазовращатель, как правило, использует в электрически управляемой среде невзаимный аффект, например эффект Фарадея в феррите. Взаимный отражательный фазовращатель с Y-циркулятором образует проходной невзаимный фазовращатель.
В реферате также присутствуют сведения о разработке аналогового фазовращателя на полупроводниковых варикапах с фазовым сдвигом 0 - 360 градусов и шириной полосы рабочих частот 8%. Рассматривается вопрос минимизации модуляции амплитуды коэффициента передачи в различных фазовых состояниях. Была разработана специальная схема трансформации волновых сопротивлений, что позволило использовать варикапы с достаточно низкой добротностью. Описано создание схемы цифрового управления аналоговым фазовращателем. Радар, фазированная антенная решетка, электронное сканирование, фазовращатель, поверхностный монтаж, варикап. Ферритовые фазовращатели. Подмагничивания.
Ферритовая пластина прямоугольного поперечного сечения размещается параллельно узкой стенке между ней и серединой волновода (приблизительно на расстоянии а/4 от узкой стенки, где а - размер широкой стороны волновода). Полюса магнита N и S устанавливаются по обе стороны пластины. В таком фазовращателе для увеличения фазового сдвига и уменьшения общей длины обычно используются две ферритовые пластины, располагаемые по обе стороны от средней плоскости волновода и соответственно намагничиваемые.Возможен коаксиальный вариант фазовращателя, в котором феррит заполняет часть пространства между центральным проводом и экранирующим цилиндром, а поперечное магнитное поле создается магнитом, устанавливаемым снаружи отрезка коаксиальной линии. Ферритовые фазовращатели СВЧ успешно конкурируют с фазовращателями на p-i-n диодах и позволяют управлять более высокими мощностями, но обладают несколько меньшим быстродействием.
СВЧ фазовращатель с планарными конденсаторами на основе пленок титаната стронция.
Нелинейность диэлектрической проницаемости SrTiO3 при повышенных значениях постоянного электрического поля, позволяет использовать их в электрически управляемых устройствах СВЧ, было установлено, что при увеличении постоянного напряжения Ub
прикладываемого к исследованным конденсаторам, до величины Ub = 400В емкость конденсаторов уменьшалась в 1,8 раза. Фазовращатель выполненный на основе планарных SrTiO3 конденсаторов продемонстрировал неперывное изменение фазы (0-55 deg) в диапазоне частот 8,6-9,0 ГГц и параметр качества 110 deg/dB
Перспективы развития ФАР.
К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся: 1) широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР; 2) развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный Радиотелескоп), 3) дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР; 4) развитие теории синтеза и методов машинного проектирования ФАР; 5) разработка теории и внедрение в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР); 6) разработка методов управления независимым движением отдельных лучей в многолучевых ФАР.
Введение.
Представим себе высоконаправленную антенну, обеспечивающую связь с искусственным спутником Земли (ИСЗ). Такая антенна имеет остросфокусированный луч, точно направленный на объект связи. Примером такой антенны может служить наземная антенна станции «Орбита», которая использовалась в первых советских системах передачи телевидения и обеспечения многоканальной телефонной связи через ИСЗ. Эта антенна представляет собой параболический рефлектор диаметром порядка десяти метров. Для того чтобы осуществить слежение за объектом связи или радионаблюдения с помощью такой антенны, необходимо поворачивать всю эту довольно тяжелую механическую систему.
Очевидно, что во многих случаях нужна антенна, у которой направление луча не было бы связано с ориентацией всей антенны как механической конструкции. Нужна антенна с немеханическим движением луча или, другими словами, антенна с электронным сканированием. Под сканированием здесь понимается движение луча антенны, осуществляющее обзор пространства в заданном пространственном угле. Такая антенна нужна не только в системах связи с ИСЗ, но и в системе управления движением в районе большого аэропорта. Особую роль антенны с электронным сканированием играли и продолжают играть в системах противоракетной обороны (ПРО). С начала 90-х годов антенны с электронным сканированием стали объектом внимания автомобильных компаний. В этой связи такие антенны могут стать предметом массового спроса, как цветной телевизор или персональный компьютер. Сложившееся к настоящему времени техническое решение антенны с электронным сканированием представлено в виде решетки, в узлах которой расположены простейшие излучатели электромагнитной волны. Цепи питания этих излучателей организованы так, что излучение, испускаемое каждым излучателем, когерентно с излучением всех излучателей, в то время как фаза излучаемых волн изменяется по заданному закону.
Изменение распределения фаз на излучателях позволяет сформировать луч антенны в заданном направлении. Такая решетка излучателей с управляемым распределением фаз волн, излучаемых элементарными излучателями, получила название фазированной антенной решетки (ФАР). Таким образом, термины антенна с немеханическим движением луча, антенна с электронным сканированием или фазированная антенная решетка практически являются синонимами.
Идея, что лучом системы когерентных излучателей можно управлять, изменяя распределение фаз на излучателях, была высказана уже давно. Одна из первых антенн с немеханическим управлением диаграммой направленности была построена для трансатлантической радиотелефонной линии связи в 1937 году. Эта антенна, обладая довольно высокой направленностью, позволяла изменять направление приема лучей в вертикальной плоскости и таким путем выбирать направление прихода лучей, наименее ослабленных при отражении от ионосферы. Так как благодаря направленным свойствам антенны осуществлялся прием только одного отраженного луча, то резко уменьшались замирания сигнала. Эта антенна представляла собой систему ромбических антенн, расположенных вдоль прямой на участке длиной около 1,5 км. Управление диаграммой направленности осуществлялось изменением фазовых соотношений между токами в отдельных ромбах. Высокой скорости управления лучом системы ромбических антенн не требовалось. Развитие радиолокации поставило задачу управления диаграммой направленности антенны в течение интервалов времени,
измеряемых вначале миллисекундами, а затем микросекундами и даже долями микросекунды.
Насколько можно судить по известным публикациям, первая антенна с электронным сканированием для применения в радиолокации была осуществлена в Ленинградском электротехническом институте (ЛЭТИ) в 1955 году в группе под руководством проф. О. П. Орова (1914-1955). В основу принципа действия антенны было положено управление фазами волн в нескольких излучателях антенны с помощью фазовращателей, содержащих ферритовые элементы. Как раз в те годы в электронике различных частот началось широкое применение ферритов - железосодержащих окислов металлов, которые являются диэлектриками, но обладают магнитными свойствами, близкими к свойствам железа. Первая публикация о фазовращателе на основе феррита, предназначенном для применения в антенне с электронным сканированием, появилась в конце 1954 года. А публикации по самой антенне в 1956-1957 годах. Задача разработки антенны с электронным сканированием слагается из двух составных частей: 1)Ввыбор числа излучателей и конфигурации их размещения; 2) Разработка фазовращателей, управляющих фазой электромагнитной волны в излучателях.
Фазированные антенные решетки отличаются от АР включением в антенный тракт системы фазовращателей или коммутаторов, осуществляющей управление фазовым или амплитудно-фазовым распределением для электрического сканирования. Нашли применение различные схемы построения ФАР в зависимости от требований к системе. Пространственный способ возбуждения (называемый еще распределителем оптического типа) допускает два варианта антенн: отражательную ФАР (рис. 1) и проходную ФАР (рис. 2). Фидерный способ возбуждения (распределитель закрытого типа) допускает последовательное, параллельное, двоично-этажное (елочки) питание излучателей и фазовращателей и их комбинации. Находят применение гибридные антенны - совместное использование ФАР и антенн оптического типа. Сочетание радиолинзы с ФАР или применение направленных излучающих элементов ФАР (зеркал, подрешеток и т. д.) позволяет получить те же результаты: уменьшение числа управляемых фазовращателей при ограниченном секторе сканирования.
Сочетание линзы с ФАР расширяет сектор сканирования плоской ФАР. Одновременно с этим происходит ухудшение других характеристик антенной системы.Цилиндрическая решетка излучателей, подключаемая коммутаторами (с фазовращателями или без них) к возбуждающей системе полосковых линий, волноводов, радиальных волноводов и других элементов, позволяет сканировать в широком секторе углов. Возможно применение многолучевых антенн, формирующих с одного излучающего раскрыва несколько ДН, каждой из которых соответствует входной тракт антенны. Многоканальный коммутатор, подключенный к входам многолучевой антенны, позволяет дискретно перемещать луч в пространстве в соответствии с характеристиками многолучевой антенны. Необходимость использования многолучевого режима в радиотехнических системах приводит к созданию ФАР с несколькими независимыми сканирующими лучами. Возможный путь решения таких задач состоит в совмещении многолучевых антенн с системой управляемых фазовращателей и возбуждаемых через направленные ответвители магистральных волноводов. Каждая из приведенных схем построения ФАР имеет свои преимущества и недостатки, и выбор той или иной схемы определяется поставленными требованиями к радиотехнической системе, последующей обработкой СВЧ-сигнала, а также элементной базой.
Элементная база ФАР включает: излучатели, фазовращатели, коммутаторы, сумматоры (делители) мощности и линии передач СВЧ. Центральным элементом - "кирпичиком", из которого строится ФАР. Служит фазовращатель. Его важнейшими характеристиками являются мощности потерь, управления и предельно допустимая рабочая полоса частот, быстродействие, зависимость фазового сдвига от управляющего воздействия, габариты и стоимость. Волноводное, коаксиальное, полосковое, микрополосковое исполнение фазовращателя определяет выбор не только тракта СВЧ, но и тип излучателя. В диапазоне СВЧ нашли широкое применение полупроводниковые (p-i-n-диодные) и ферритовые фазовращатели, которые принято разделять на проходные или отражательные, взаимные и невзаимные, дискретные или плавные, с памятью фазового сдвига и без запоминания.
Проходной фазовращатель - это четырехполюсное согласованное устройство СВЧ, вносящее дополнительный фазовый сдвиг от 0 до 360° - в зависимости от управляющего сигнала. Отражательный фазовращатель - это двухполюсное устройство (короткозамкнутый отрезок лини СВЧ), у которого фаза отраженной волны также управляется. Короткое замыкание выходных клемм в проходном фазовращателе преобразует его в отражательный. Отражательный фазовращатель может быть преобразован в проходной за счет применения мостового устройства. Взаимный фазовращатель обладает одинаковым вносимым фазовым сдвигом при прямом и обратном направлении распространения волны, невзаимный этим свойством не обладает. Невзаимный фазовращатель, как правило, использует в электрически управляемой среде невзаимный аффект, например эффект Фарадея в феррите. Взаимный отражательный фазовращатель с Y-циркулятором образует проходной невзаимный фазовращатель.
В реферате также присутствуют сведения о разработке аналогового фазовращателя на полупроводниковых варикапах с фазовым сдвигом 0 - 360 градусов и шириной полосы рабочих частот 8%. Рассматривается вопрос минимизации модуляции амплитуды коэффициента передачи в различных фазовых состояниях. Была разработана специальная схема трансформации волновых сопротивлений, что позволило использовать варикапы с достаточно низкой добротностью. Описано создание схемы цифрового управления аналоговым фазовращателем. Радар, фазированная антенная решетка, электронное сканирование, фазовращатель, поверхностный монтаж, варикап. Классификация фазовращателей.
Особенно большую роль играют фазовращатели в фазированных антенных решетках, где применяется большое число антенных элементов, соотношение фаз между которыми должно либо сохраняться неизменным, либо в процессе работы изменяться по определенному закону. Имеются фазовращатели различных типов: механические, полупроводниковые, ферритовые.
Фазовращатели для ФАР можно разделить на две большие группы: 1)аналоговые фазовращатели, фазовый сдвиг в которых представляет собой непрерывную функцию управляющего воздействия (напряжения или тока); 2)цифровые (дискретные) фазовращатели, фазовый сдвиг в которых задается двоичным кодом.
В механических фазовращателях для изменения фазы колебаний между двумя неподвижными сечениями линии передачи последовательно включается секция, например, «тромбонного» типа (подковообразной формы), длина которой механически изменяется с помощью скользящих контактов.
В другом варианте механического фазовращателя для волновода изменение фазы достигается, например, механическим погружением диэлектрической пластины параллельно силовым линиям электрического поля в прямоугольный волновод через неизлучающую щель в середине широкой стенки. Это приводит к замедлению электромагнитной волны и увеличению запаздывания на выходе фазовращателя.
В основе аналоговых фазовращателей лежит материал, магнитная или диэлектрическая проницаемость которого изменяется под внешним воздействием. Таким материалом может служить феррит или сегнетоэлектрик, диэлектрическая проницаемость которого зависит от напряженности электрического поля.
Недостатком механических фазовращателей является невозможность изменения фазы с большой скоростью.
В фазовращателях на полупроводниковых диодах этот недостаток отсутствует. К их достоинствам относятся малые габаритные размеры и масса, большая скорость и простота управления. Полупроводниковые фазовращатели изготавливают в волноводном, полосковом и микрополосковом исполнении.
В полупроводниковых фазовращателях СВЧ используются главным образом коммутационные p-i-n диоды. Кроме них в управляющих устройствах CBЧ применяются также коммутационные р-п диоды, в том числе и варикапы. Однако p-i-n диоды по сравнению с р-п диодами позволяют пропускать значительно большие мощности СВЧ, вплоть до сотен киловатт в импульсе (или среднюю мощность в сотни ватт).
Диоды p-i-n (в отличие от диодов р-п) кроме слоев p и n содержат высокоомную область i, расположенную между слоями р и п. Область i называют базой диода. Торцевые поверхности диода (диаметром около 1 мм) прилегающие к слоям р и п, металлизируют и используют в качестве выводов. При отрицательном напряжении на диоде он оказывается запертым и его эквивалентная схема имеет вид большого активного сопротивления (несколько килоом), шунтированного малой емкостью диода (десятые доли пикофарады). При подаче на диод положительного управляющего напряжения (порядка 1... 2 В) его сопротивление резко уменьшается в сотни раз.
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 1976; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.195.142 (0.01 с.) |