Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Oracle Business Intellegence↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги Поиск на нашем сайте У компании Oracle существует несколько линеек продуктов класса Business Intelligence. Основная и самая большая называется Oracle Business Intelligence Enterprise Edition PLUS. Oracle Business Intelligence (BI) – это самый обширный комплекс технологий и приложений для обеспечения представления внутренней организации бизнеса, включающий ведущие BI-приложения, технологические BI-платформы и хранилища данных. В BI-платформы Orecle основе лежит аналитический сервер Oracle BI Server EE. Этот сервер хранит: 1. описание различных источников данных. В качестве источников данных могут быть практически любые СУБД, как реляционные (Oracle, Microsoft SQL Server, Microsoft Analysis Services, IBM DB2), так и многомерные (MS AS, Hyperion Essbase или SAP BW), а также ODBC источники, текстовые файлы и т.д. 2. в репозитории хранится бизнес-модель данных, построенная над физическими источниками данных. Бизнес-модель описывает данные в терминах, используемых при проектировании и построении хранилищ данных. Там же описывается, каким образом данные из физических источников соответствуют бизнес-модели. 3. презентационный слой, представляющий собой витрины данных. В презентационном слое описывается, по сути, как, в каких терминах и в каком наборе будут видны данные разным типам пользователей. BI Server фактически представляет собой сервер приложений, который по запросу от пользователя вычисляет, какие данные нужны, в каком физическом источнике они находятся и делает запрос к соответствующему источнику или источникам (один запрос может возвращать данные из нескольких разных источников одновременно), после чего, сервер собирает, при необходимости агрегирует или производит дополнительные вычисления и возвращает результат. С другой стороны, BI Server сам виден в сети как ODBC источник и позволяет делать к себе запросы с помощью любого инструмента или программы, работающей с ODBC. При этом этот сервер остается виртуальным, так как данные на нем не хранятся, а собираются в момент запроса. Аналитический сервер позволяет использовать хранилище как источник данных, одновременно с OLTP системами. Инструментальные средства корпорации Oracle обеспечивают полное интегрированное решение для создания ХД и эффективного использования накопленной в нем информации. Общий перечень продуктов Oracle, необходимых для реализации технологии хранилищ данных и аналитических приложений, приводится в Таблица 1 соответствии с выделенными ранее уровнями (Рисунок 14). Таблица 1. Продукты Oracle для OLAP и бизнес-анализа
В качестве среды хранения информации в реляционных ХД и ВД используется сервер Oracle Database. Центральным инструментальным средством создания хранилищ и витрин является Oracle Warehouse Builder, построенный на базе современной архитектуры Common Warehouse Metadata. Он предназначен для описания структуры ХД и ВД, проектирования и создания процедур извлечения, согласования и загрузки данных, а также генерации метаданных для средств доступа, например таких, как Discoverer. Проектировать хранилище можно и с помощью стандартного инструмента Oracle Designer, а затем автоматически перенести описание проекта в репозиторий метаданных Oracle Warehouse Builder. Microsoft SQL Server Analysis Services Другой значимой OLAP-технологией является BI-решение от компании Microsoft, построенное на платформе SQL Server и включающее компоненты Analysis Services и Integration Services. Это решение будет подробно рассмотрено во второй главе. Технические аспекты многомерного хранения данных OLAP-серверы скрывают от конечного пользователя способ реализации многомерной модели. Они формируют гиперкуб, с которым пользователи посредством OLAP-клиента выполняют необходимые манипуляции, анализируя данные. Однако способ реализации важен, поскольку от него зависят производительность решения и требуемые ресурсы. Существует три основных способа реализации многомерной модели – MOLAP, ROLAP, HOLAP. MOLAP MOLAP (Multidimensional OLAP) – для реализации многомерной модели используются многомерные БД. При этом данные хранятся в виде упорядоченных многомерных массивов. Такие массивы подразделяются на гиперкубы, в которых все хранимые в БД ячейки имеют одинаковую мерность, и поликубы, в которых каждая ячейка хранится с собственным набором измерений. Физически данные хранятся в «плоских» файлах, при этом куб представляется в виде одной плоской таблицы, в которую построчно вписываются все комбинации элементов всех измерений с соответствующими им значениями мер (Рисунок 10).
Рисунок 16. Куб в MOLAP-системе Преимущества использования многомерных БД в OLAP-системах:
Недостатки MOLAP:
На основании анализа достоинств и недостатков многомерных БД можно выделить следующие условия, при которых их использование является эффективным:
ROLAP ROLAP (Relational OLAP) – для реализации многомерной модели используются реляционные БД. В настоящее время распространены две основные схемы реализации многомерного представления данных с помощью реляционных таблиц: схема "звезда" (Рисунок 11) и схема "снежинка" (Рисунок 12). Если каждое измерение содержится в одной таблице, такая схема хранилища данных носит название «звезда» (star schema). Если же хотя бы одно измерение содержится в нескольких связанных таблицах, такая схема хранилища данных носит название «снежинка» (snowflake schema). Дополнительные таблицы измерений в такой схеме, обычно соответствующие верхним уровням иерархии измерения и находящиеся в соотношении «один ко многим» в главной таблице измерений, соответствующей нижнему уровню иерархии, иногда называют консольными таблицами (outrigger table).
Рисунок 17. Пример схемы данных "звезда" Рисунок 18. Пример схемы данных "снежинка" В сложных задачах с иерархическими измерениями целесообразно использование схемы "снежинка". В этих случаях отдельные таблицы фактов создаются для возможных сочетаний уровней обобщения различных измерений (Рисунок 12). Это позволяет добиться лучшей производительности, но часто приводит к избыточности данных и к значительным усложнениям в структуре базы данных, в которой оказывается огромное количество таблиц фактов. Увеличение числа таблиц фактов в БД определяется не только множественностью уровней различных измерений, но и тем обстоятельством, что в общем случае факты имеют разные множества измерений. При абстрагировании от отдельных измерений пользователь должен получать проекцию максимально полного гиперкуба, причем не всегда значения показателей в ней должны являться результатом элементарного суммирования. Таким образом, при большом числе независимых измерений необходимо поддерживать множество таблиц фактов, соответствующих каждому возможному сочетанию выбранных в запросе измерений, что также приводит к неэкономному использованию внешней памяти, увеличению времени загрузки данных в БД со схемой "звезда" из внешних источников и сложностям администрирования. Использование реляционных БД в OLAP-системах имеет следующие достоинства:
Главный недостаток ROLAP по сравнению с многомерными СУБД — меньшая производительность. Для обеспечения производительности, сравнимой с MOLAP, реляционные системы требуют тщательной проработки схемы базы данных и настройки индексов. Только при использовании схем типа "звезда" производительность хорошо настроенных реляционных систем может быть приближена к производительности систем на основе многомерных баз данных. HOLAP HOLAP (Hybrid OLAP) - для реализации многомерной модели используются и многомерные, и реляционные БД. HOLAP-серверы используют гибридную архитектуру, которая объединяет технологии ROLAP и MOLAP. В отличие от MOLAP, которая работает лучше, когда данные более-менее плотные, серверы ROLAP показывают лучшие параметры в тех случаях, когда данные довольно разрежены. Серверы HOLAP применяют подход ROLAP для разреженных областей многомерного пространства и подход MOLAP — для плотных областей. Серверы HOLAP разделяют запрос на несколько подзапросов, направляют их к соответствующим фрагментам данных, комбинируют результаты, а затем предоставляют результат пользователю.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 241; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.178.16 (0.01 с.) |