Методы седиментационного анализаПравить 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы седиментационного анализаПравить



Обычно седиментация в гравитационном поле применяется для грубодисперсных систем (суспензий, эмульсий), размер частиц которых превышает 1 мкм. Один из традиционных приборов для этой цели — торсионные весы.

Седиментация в центробежном поле используется для изучения коллоидных систем и растворов полимеров; центробежные ускорения достигают сотен тысяч {\displaystyle g} и реализуются в ультрацентрифугах с частотой вращения ротора до нескольких десятков тысяч об/мин.

Отношение скорости седиментации к центробежному ускорению (константа седиментации) — важная молекулярно-кинетическая характеристика системы. Она зависит от массы и формы частиц фазы или молекулярной массы макромолекул. Единицей константы седиментации является сведберг, обозначаемый в литературе как большое латинское {\displaystyle S}.

Эти методы позволяют получать как усреднённую характеристику дисперсности, так и кривые распределения частиц по размерам или массам (для полимеров — молекулярно-массовое распределение).

71. Аналити́ческая хи́мия — наука, развивающая теоретические основы химического анализа веществ и материалов и разрабатывающая методы идентификации, обнаружения, разделения и определения химических элементов и их соединений, а также методы установления химического состава веществ. Проведение химического анализа в настоящее время заключается в получении информации о составе и природе вещества.

В зависимости от задач, аналитическая химия подразделяется на качественный анализ, нацеленный на определение того, что (или какие вещества), в какой форме находится в образце, и количественный анализ, нацеленный на определение сколько данного вещества (элементов, ионов, молекулярных форм и др.) В задачи качественного анализа входит:

1) установление присутствия (обнаружение, открытие) в пробе тех или иных компонентов (молекул, атомов, ионов);

2) идентификация веществ и компонентов в пробе неизвестного состава (установление их аналогии соответствующим эталонам)[1].

Задачи количественного анализа – определение содержания или концентрации компонентов в пробе.

Предмет её как науки — совершенствование существующих и разработка новых методов анализа, поиск возможностей их практического применения, исследование теоретических основ аналитических методов.

Деление химического анализа на качественный анализ и количественный анализ в определенной степени условно. Если компонент не обнаружен в пробе, то его содержание ниже некоторого предела, ограничиваемого используемым методом. Когда состав анализируемой пробы неизвестен, сначала проводят качественный анализ и только после этого приступают к количественным измерениям. Качественный и количественный анализ проводят химическими, инструментальными (физическими и физико-химическими) и биологическими методами[1].

Определение элементного состава материальных объектов называют элементным анализом. Установление строения химических соединений и их смесей на молекулярном уровне называют молекулярным анализом. Одним из видов молекулярного анализа химических соединений является структурный анализ, направленный на исследование пространственного атомного строения веществ, установление эмпирических формул, молекулярных масс и др. (см. рентгеноструктурный анализ). В задачи аналитической химии входит определение характеристик органических, неорганических и биохимических объектов. Анализ органических соединений по функциональным группам называют функциональным анализом. Аналитическая химия существует с тех пор, как существует химия в современном её смысле, а многие применяемые в ней приёмы относятся к ещё более ранней эпохе, эпохе алхимии, одной из главных задач которой было именно определение состава различных природных веществ и изучение процессов их взаимных превращений. Но, по мере развития всей химии в целом, значительно совершенствовались и применяемые в ней методы работы, и, наряду со своим чисто служебным значением одного из вспомогательных отделов химии, аналитическая химия в настоящее время имеет значение совершенно самостоятельного отдела химического знания с очень серьёзными и важными задачами теоретического характера. Очень важное влияние на развитие аналитической химии имела современная физическая химия, обогатившая её рядом совершенно новых методов работы и теоретических оснований, к числу которых нужно отнести учение о растворах, теорию электролитической диссоциации, закон действующих масс и всё учение о химическом сродстве. Совокупность традиционных методов определения состава вещества путём его последовательно химического разложения получила название «мокрой химии» («мокрый анализ»). Эти методы обладают относительно низкой точностью, требуют относительно невысокой квалификации аналитиков и ныне почти полностью вытеснены современными инструментальными методами (оптическими, масс-спектрометрическими, электрохимическими, хроматографическими и другими физико-химическими методами) определения состава вещества. Однако у мокрой химии есть своё преимущество перед спектрометрическими методами — она позволяет путём проведения стандартизованных процедур (систематический анализ) напрямую определять состав и разные окислительные состояния элементов, таких как железо (Fe+2, Fe+3), титан и др.

Аналитические методы можно разделить на валовые и локальные. Для валовых методов анализа обычно требуется отделённое, измельченное вещество (представительная проба). Локальные методы определяют состав вещества в самом образце, что позволяет составлять «карты» распределения химических свойств образца по его поверхности и/или глубине. Следует также выделить методы прямого анализа, то есть не связанного с предварительной подготовкой пробы. Часто подготовка проб необходима (напр., измельчение, предварительное концентрирование или разделение). При подготовке проб, интерпретации результатов, оценке числа анализов используются статистические методы Для определения качественного состава какого-либо вещества необходимо изучить его свойства, которые с точки зрения аналитической химии, могут быть двоякого рода: свойства вещества как такового и свойства его в химических превращениях.

К числу первых относятся: физическое состояние (твёрдое вещество, жидкость, газ), структура его в твёрдом состоянии (аморфное или кристаллическое вещество), цвет, запах, вкус и др. При этом нередко уже по одним только внешним свойствам, определяемым при помощи органов чувств человека, представляется возможным установить природу данного вещества. В большинстве же случаев приходится превращать данное вещество в какое-либо новое с ясно выраженными характерными свойствами, пользуясь для этой цели некоторыми специально подбираемыми соединениями, носящими название реактивов.

Применяемые в аналитической химии реакции крайне разнообразны и находятся в зависимости от физических свойств и степени сложности состава изучаемого вещества. В том случае, когда химическому анализу подлежит заведомо чистое, однородное химическое соединение, работа производится сравнительно легко и быстро; когда же приходится иметь дело со смесью нескольких химических соединений, вопрос об её анализе усложняется, и при производстве работы нужно держаться некоторой определённой системы для того, чтобы не просмотреть ни одного входящего в вещество элемента. В аналитической химии существует два рода реакций: реакции мокрым путём (в растворах) и реакции сухим путём

72. Для определения качественного состава какого-либо вещества необходимо изучить его свойства, которые с точки зрения аналитической химии, могут быть двоякого рода: свойства вещества как такового и свойства его в химических превращениях.

К числу первых относятся: физическое состояние (твёрдое вещество, жидкость, газ), структура его в твёрдом состоянии (аморфное или кристаллическое вещество), цвет, запах, вкус и др. При этом нередко уже по одним только внешним свойствам, определяемым при помощи органов чувств человека, представляется возможным установить природу данного вещества. В большинстве же случаев приходится превращать данное вещество в какое-либо новое с ясно выраженными характерными свойствами, пользуясь для этой цели некоторыми специально подбираемыми соединениями, носящими название реактивов.

Применяемые в аналитической химии реакции крайне разнообразны и находятся в зависимости от физических свойств и степени сложности состава изучаемого вещества. В том случае, когда химическому анализу подлежит заведомо чистое, однородное химическое соединение, работа производится сравнительно легко и быстро; когда же приходится иметь дело со смесью нескольких химических соединений, вопрос об её анализе усложняется, и при производстве работы нужно держаться некоторой определённой системы для того, чтобы не просмотреть ни одного входящего в вещество элемента. В аналитической химии существует два рода реакций: реакции мокрым путём (в растворах) и реакции сухим путём. При качественном химическом анализе важно определить не только какие элементы или соединения входят в состав данного вещества, но также и то, в каких, примерно, относительных количествах находятся эти составные части. Для этой цели необходимо исходить всегда из определённых количеств анализируемого вещества (достаточно обыкновенно брать 0,5—1 грамм) и при производстве анализа сравнивать величину отдельных осадков между собою. Необходимо также применять растворы реактивов определенной крепости, а именно: нормальные, полунормальные, в одну десятую нормального.

Каждый качественный химический анализ распадается на три части:

1. предварительное испытание,

2. открытие металлов (катионов),

3. открытие неметаллов (металлоидов) или кислот (анионов).

В отношении природы анализируемого вещества могут встретиться четыре случая:

1. вещество твёрдое не металлическое,

2. вещество твёрдое в виде металла или сплава металлов,

3. жидкость (раствор),

4. газ.

При анализе твёрдого неметаллического вещества прежде всего производится внешний осмотр и микроскопическое исследование, а также предварительное испытание указанными выше способами анализа в сухом виде. Затем проба вещества растворяется, в зависимости от природы его, в одном из следующих растворителей: вода, соляная кислота, азотная кислота и царская водка (смесь соляной и азотной кислот). Вещества, неспособные растворяться ни в одном из указанных растворителей, переводятся в раствор некоторыми специальными приёмами, как-то: сплавлением с содой или поташом, кипячением с раствором соды, нагреванием с некоторыми кислотами и др. Полученный раствор подвергается систематическому анализу с предварительным выделением металлов и кислот по группам и дальнейшим разделением их на отдельные элементы, пользуясь свойственными им частными реакциями.

При анализе сплава металлов определенная проба его растворяется в азотной кислоте (в редких случаях в царской водке), и полученный раствор выпаривается досуха, после чего твёрдый остаток растворяется в воде и подвергается систематическому анализу.

Если вещество представляет жидкость, прежде всего обращается внимание на её цвет, запах и реакцию на лакмус (кислотная, щелочная, нейтральная). Чтобы удостовериться в присутствии в растворе каких-либо твёрдых веществ, небольшую порцию жидкости выпаривают на платиновой пластинке или часовом стекле. После этих предварительных испытаний жидкость анализируется обычными методами.

Анализ газов производится некоторыми специальными методами, указываемыми в количественном анализе. Количественный химический анализ имеет целью определение относительного количества отдельных составных частей какого-либо химического соединения или смеси. Применяемые в нём методы находятся в зависимости от качеств, состава вещества, и потому количественному химическому анализу должен предшествовать всегда качественный химический анализ

Для производства количественного анализа можно применять два различных метода: весовой и объемный. При весовом методе определяемые тела выделяются в виде, по возможности, нерастворимых или трудно растворимых соединений известного химического состава, и определяется вес их, на основании которого можно найти количество искомого элемента вычислением. При объёмном анализе измеряются объёмы титрованных (содержащих определенное количество реактива) растворов, употребляемых для анализа. Кроме того, различается ещё ряд специальных методов количественного химического анализа, а именно:

1. электролитический, основанный на выделении отдельных металлов электролизом,

2. колориметрический, производимый по сравнению интенсивности окраски данного раствора с окраской раствора определенной крепости,

3. органический анализ, состоящий в сожжении органического вещества в углекислый газ С02 и воду Н20 и в определении по количеству их относительного содержания в веществе углерода и водорода,

4. газовый анализ, состоящий в определении некоторыми специальными методами качественного и количественного состава газов или их смеси.

Совершенно особую группу представляет медицинский химический анализ, обнимающий ряд различных методов исследования крови, мочи и других продуктов жизнедеятельности человеческого организма. Методы весового количественный химического анализа бывают двух родов: метод прямого анализа и метод непрямого (косвенного) анализа. В первом случае подлежащая определению составная часть выделяется в виде какого-либо нерастворимого соединения, и определяется вес последнего. Косвенный анализ основан на том, что два или несколько веществ, подвергающихся одной и той же химической обработке, претерпевают неодинаковое изменение их веса. Имея, например, смесь хлористого калия и азотнокислого натрия, можно определить первый из них прямым анализом, осадив хлор в виде хлористого серебра и взвешивая его. Если же имеется смесь хлористых солей калия и натрия, можно определить отношение их непрямым методом путём осаждения всего хлора, в виде хлористого серебра, и определения его веса, с последующим вычислением.

 

73. В основе качественного химического анализа лежат аналитические реакции, которые осуществляют с помощью аналитических реактивов (реагентов). Химические реакции, при проведении которых наблюдается аналитический эффект (сигнал) называются аналитическими химическими реакциями. Аналитическая реакция должна протекать достаточно быстро и быть практически необратимой. Аналитические реакции делятся на реакции разделения (отделения) и обнаружения (открытия).

Реакции разделения служат для практически полного отделения одних веществ (ионов) от других. Под практически полным отделением понимают такое состояние химической системы, когда концентрация оставшегося в растворе отделяемого иона не превышает 10-6 моль/л.

Реакции обнаружения, которые сопровождаются внешним эффектом (образование осадка, изменение окраски, выделение газообразных продуктов), служат для доказательства наличия в растворе молекул веществ, ионов, функциональных групп в составе органических соединений и т. д.

Каждая аналитическая реакция характеризуется чувствительностью или пределом обнаружения (ПО).

Пределом обнаружения (чувствительностью) называют такое наименьшее содержание определяемого иона (вещества), при котором можно его обнаружить действием данной реакции с достаточной достоверностью (вероятностью равной или стремящейся к единице). Различают концентрационный ПО (минимально определяемая концентрация - С min, г/мл) и массовый ПО (открываемый минимум - m min, мкг). Концентрационный и мас-совый пределы обнаружения связаны между собой соотношением (V - объем раствора, мл):

m min = C minV ∙106 [мкг]

Для характеристики чувствительности реакции применяют также понятие лимитирующего объема (предельное разбавление) – это объем растворителя, в котором надо растворить 1 г вещества, чтобы получить минимально определяемую концентрацию:

V lim = 1/ С min мл/г

Аналитическая реакция тем чувствительней, чем меньшее количество вещества она позволяет обнаружить, то есть чем меньше ее предел обнаружения. Для большинства аналитических реакций C min = 10-4-10-5 г/мл (10-3-10-4 моль/л). Концентрационный ПО для высокочувствительных реакций составляет10-6-10-7 г/мл (10-5-10-6 моль/л). В случае малочувствительных реакций (C min ≥ 10-3 г/мл) для уменьшения ПО (повышения чувствительности) применяют концентрирование анализируемого раствора. Предел обнаружения (ПО) не является постоянной характеристикой химической реакции, используемой для анализа, и в значительной степени зависит от условий протекания реакции: кислотности среды, концентрации реагентов, присутствия посторонних веществ, температуры, времени наблюдения и др.

Наряду с чувствительностью аналитических реакций большое значение для анализа имеет их специфичность.

Специфической реакцией на данный ион называется такая реакция, которая позволяет обнаружить его в смеси с другими ионами (реакция, характерная только для одного иона или соединения). Например:

NH4+ + OH- → NH3↑ + H2O (запах аммиака или посинение индикаторной бумаги)

3Fe2+ + 2[Fe(CN)6]3- → Fe3[Fe(CN)6]2↓ (синий, «турнбулева синь»)

4Fe3+ + 3[Fe(CN)6]4- → Fe4[Fe(CN)6]3↓ (синий, «берлинская лазурь»)

Таких реакций немного и чаще приходится иметь дело с селективными(избирательными) реакциями, которые дают одинаковый или сходный эффект с несколькими ионами. Например, оксалат аммония образует осадки с катионами Ca2+, Ba2+, Sr2+ и некоторыми другими. Степень селективности таких реакций тем выше, чем меньше число ионов, с которыми они дают положительный результат. Предельный случай селективности – специфическая реакция. Избирательность является важнейшей характеристикой эффективности методов анализа и реакций, используемых для обнаружения веществ.

Реакции, основанные на индивидуальных свойствах уже образовавшихся продуктов, например, на способности осадков растворяться в кислотах, щелочах называются реакциями тождества.

Применяя специфические и высокоселективные реакции можно обнаруживать ионы так называемым дробным методом, то есть непосредственно в отдельных порциях исследуемого раствора независимо от содержания в нем других ионов. В этом случае не имеет значения порядок обнаружения отдельных компонентов смеси. Дробное определение ионов с использованием селективных реагентов без разделения на группы возможно благодаря маскированию мешающих ионов, изменению pH и других условий.

Для повышения селективности применяют:

1) методы удаления мешающих ионов или их “маскировку”, используя реакции осаждения, окисления-восстановления и комплексообразования. Например, избежать мешающего действия ионов Fe3+ при обнаружении Со2+ по реакции с роданид-ионом можно осадив железо в виде гидроксида в аммиачной среде (при этом кобальт остается в растворе в виде аммиаката [Co(NH3)6]2+), либо восстановив до Fe2+, либо связав в прочный бесцветный комплекс [FeF6]3- (маскировка). Чтобы ионы аммония не мешали определению ионов калия по реакции с кобальтинитритом натрия, их переводят действием формальдегида в гексаметилентетрамин:

4NH4+ + 6HCOH + 4OH- → N4(CH2)6 + 10H2O

2) Использование методов разделения, т.е. избирательного распределения компонентов анализируемой системы между двумя разделяющимися фазами. Наибольшее значение в практике анализа имеют осаждение, экстракция, хроматография и ионный обмен.

При невозможности определения ионов дробным методом разрабатывают определенную последовательность реакций, представляющую собой систематический ход анализа. В этом случае к обнаружению каждого иона приступают после того, как все другие мешающие его определению ионы будут предварительно удалены из раствора. Таким образом, при систематическом ходе анализа наряду с реакциями обнаружения отдельных ионов прибегают также к реакциям отделения их друг от друга, используя различия в растворимости соединений, образуемых разделяемыми ионами. При систематическом ходе анализа ионы на первом этапе выделяют из сложной смеси не поодиночке, а целыми группами, пользуясь их одинаковым отношением к действию некоторых реагентов, называемых групповыми реагентами. Групповой реагент, в общем случае, должен удовлетворять следующим требованиям:

- групповой реагент должен осаждать отделяемые ионы практически полностью, то есть их концентрация в растворе после осаждения не должна превышать 10-6 моль/л;

- полученный после действия группового реагента осадок должен легко переводиться в раствор (растворятся в кислотах, щелочах, растворах комплексообразователей и т.д.);

- избыток группового реагента не должен мешать обнаружению ионов, оставшихся в растворе.

Дальнейшее разделение и обнаружение ионов проводят внутри групп.

Существует несколько схем систематического метода анализа, основанных на различном отношении групп ионов к действию определенных реагентов. Любая схема разделения предусматривает строгую последовательность отделения групп с помощью групповых реактивов. Название систематического хода анализа и состав аналитических групп катионов определяются групповыми реагентами. Для разделения катионов по методу осаждения наиболее известны сероводородная, аммиачно-фосфатная и кислотно-основная схемы анализа. На практике для анализа смесей элементов используют сочетание дробного и систематического хода анализа.

Пример систематического хода анализа – это кислотно-основная классификация катионов, которая основана на различной растворимости хлоридов, сульфатов и гидроксидов в воде, минеральных кислотах, гидроксиде натрия и растворе аммиака. В этом методе используются амфотерные свойства гидроксидов некоторых металлов и способность к образованию растворимых аммиачных комплексных соединений.

74. 1. Массовая доля – отношение (обычно процентное) массы растворенного вещества к массе раствора. Например, 15% (масс.) водный раствор NaCl на 100 единиц массы содержит 15 единиц массы NaCl и 85 единиц массы Н2О.

.

2. Мольная доля – отношение химического количества растворенного вещества (или растворителя) к сумме химических количеств всех веществ, составляющих раствор. В случае раствора одного вещества в другом мольная доля растворенного вещества (N2) равна

,

а мольная доля растворителя (N1)

,

где n1 и n2 – соответственно количество растворителя и растворенного вещества.

3. Молярная концентрация (молярность) – отношение химического количества растворенного вещества к объему раствора. Обычно молярность обозначается См или (после численного значения молярности) М. Так, 2 М Н2SO4 означает раствор, в каждом литре которого содержится два моля серной кислоты, то есть См = 2 моль/дм3.

.

4. Моляльность (моляльная концентрация) – отношение химического количества растворенного вещества к массе растворителя. Обычно моляльность обозначается буквой m. Так, для раствора H2SO4 запись m=2 моль/кг (Н2О) означает, что в этом растворе на каждый килограмм растворителя (воды) приходится два моля Н2SO4. Моляльность раствора в отличие от молярности не изменяется при изменении температуры.

.

5. Нормальность ( нормальная или эквивалентная концентрация ) – отношение числа эквивалентов растворенного вещества к объему раствора. Концентрация, выраженная этим способом, обозначается Сn или (после численного значения нормальности) буквой н. Так, 2 н. Н2SO4 означает раствор, в каждом литре которого содержится 2 эквивалента Н2SO4, то есть 98 г Н2SO4.

.

 

Эквивалент кислоты – это её количество, содержащее один эквивалент водорода, способного замещаться металлом.

Эквивалент основания – это его количество, которые реагирует с эквивалентами кислот.

Эквивалент соли может быть вычислен как частное от деления ее молярной массы на произведение числа ионов металла и его валентности:

Пользуясь растворами, состав которых выражен нормальностью, легко рассчитать, в каких объемных отношениях они должны быть смешаны, чтобы растворенные вещества прореагировали без остатка. Пусть V1 раствора вещества 1 с нормальностью N1 реагирует с V2 раствора вещества 2 с нормальностью N2. Это означает, что в реакцию вступило N1V1 эквивалентов вещества 1 и N2V2 эквивалентов вещества 2. Но вещества реагируют в эквивалентных количествах, следовательно

N1V1 = N2V2 и

Т.е. объемы растворов реагирующих веществ обратно пропорциональны их нормальностям.

 

75. Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Диссоциация на ионы в растворах происходит вследствие взаимодействия растворённого вещества срастворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя — его диэлектрическая проницаемость. Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, то есть долей распавшихся молекулэлектролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс. Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:

{\displaystyle {\mbox{KA}}\rightleftarrows {\mbox{K}}^{+}+{\mbox{A}}^{-}}

Константа диссоциации {\displaystyle K_{d}} определяется активностями катионов {\displaystyle a_{K^{+}}}, анионов {\displaystyle a_{A^{-}}} и недиссоциированных молекул {\displaystyle a_{KA}} следующим образом:

{\displaystyle K_{d}={\frac {a_{K^{+}}\cdot a_{A^{-}}}{a_{KA}}}}

Значение {\displaystyle K_{d}} зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α) может быть рассчитана при любой концентрации электролита с помощью соотношения:

{\displaystyle K_{d}={\frac {\alpha ^{2}}{1-\alpha }}f^{\pm }},

где {\displaystyle f^{\pm }} — средний коэффициент активности электролита.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Поделиться:


Читайте также:




Последнее изменение этой страницы: 2016-09-05; просмотров: 250; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.85.76 (0.067 с.)