Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Описание строения сварочной дуги постоянного и переменного тока.Содержание книги
Поиск на нашем сайте
С варочная дуга – мощный, стабильный, светящийся электрический разряд в ионизированной атмосфере газов, паров металла и веществ, входящих в состав электродных покрытий. Сварочная дуга загорается и поддерживается энергией, получаемой от источника питания постоянного или переменного тока. Приоритет в практическом использовании сварочной дуги принадлежит российским инженерам (приложение). Для протекания электрического тока через газ необходимы заряженные частицы: электроны и ионы. Образование таких частиц в газовом промежутке между электродами происходит следующим образом. В начале необходимо зажечь дугу. Процесс зажигания дуги в большинстве случаев включает три этапа. 1. Осуществляют короткое замыкание электрической цепи соприкосновением конца электрода на заготовку. При этомв месте контакта выделяется значительное количество теплоты Q согласно закону Джоуля – Ленца: Q = I 2· R ∙τ, Дж, (1.1) где I – сила тока, А; R – сопротивление, Ом; τ – время прохождения тока, с. Ток короткого замыкания практически мгновенно расплавляет металл в месте контакта. 2. Для горения дуги, после короткого замыкания, электрод и изделие необходимо раздвинуть друг от друга на расстояние 3…6 мм. При этом благодаря тепловой энергии, с поверхности электрода происходит испускание электронов (термическая эмиссия). Под действием электрического поля эти электроны устремляются к изделию и на своём пути сталкиваются с нейтральными частицами воздуха. При столкновении происходит отрыв от нейтрального атома или молекулы одного или нескольких электронов, что и называется ионизацией. 3. Процесс зажигания дуги заканчивается возникновением устойчивого дугового разряда.
3. Схема опыта, применяемого при изучении стабильности горения дуги, и табл. 1.2. с результатами опытов. При сварке на постоянном токе электрод, подсоединенный к положительному полюсу источника питания дуги, называют анодом, а к отрицательному ‒ катодом. Если сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом. Строение дуги постоянного тока и распределение потенциалов по длине дугового промежутка представлены на рис. 1.1. В сварочной дуге четко выражены три области: 1) катодная область l к, прилегающая к катоду К (–) с разогре-тым катодным пятном 1. Основным физическим процессом в этой области является электронная эмиссия и разгон электронов. Температура катодного пятна для стальных электродов достигает 2400 … 2700 °С; 2) столб дуги l ст – это ионизированный газ, который содержит атомы газов, паров металла и покрытия, нейтральные молекулы, свободные электроны и ионы. Столб дуги занимает наибольшую протяженность дугового промежутка и располагается между катодной и анодной областями. Основным процессом образования заряженных частиц (электронов, положительных ионов и отрицательных ионов) здесь является ионизация газа. Температура столба дуги зависит от состава газов, величины сварочного тока (с увеличением величины тока температура повышается), типа электродных покрытий и полярности. При обратной полярности температура столба дуги выше и она достигает от 6000 и более 8000 °С; 3) анодная область lа включает анодное пятно 2 и часть дугового промежутка, примыкающего к аноду А (+). Ток в анодной области определяется потоком электронов, идущих из столба дуги. Анодное пятно является местом входа и нейтрализации свободных электронов в материале анода. Электрон, попавший на анодную поверхность, отдает металлу не только запас кинетической энергии, но и энергию в виде теплового излучения. Вследствие этого температура анода всегда выше и на нем выделяется больше тепла. Длиновые размеры приэлектродных областей очень малы и составляют: катодной области l к ≈10-5…10-7 м; анодной области lа ≈10-4…10-5 м. Промежуток между электродами называют областью дугового разряда или дуговым промежутком. Длину дугового промежутка называют длиной дуги l д. Сварочная дуга является частью электрической сварочной цепи, и на ней происходит падение напряжения. Распределение падения напряжения по длине дугового промежутка (напряжения дуги U д) зависит от физических условий, в которых горит сварочная дуга, и является суммой падения напряжений в приэлектродных областях U к + U а и столба дуги U ст (см. рис. 1. 1): U д= U к + U ст + U а. (1.2) Для сварочной дуги при плавящемся электроде характерно U к > U а и U к + U а > U ст. Для большинства практически используемых режимов сварки принимают U к=10…20 В, U а=2…5 В и они не зависят от длины дуги и тока, а зависят от концентрации заряженных частиц в приэлектродных областях. Падение напряжения столба дуги U стсущественным образом зависит от величины сварочного тока I д, защитной среды, материала электродов и может изменяться от 6 до 40 В. Выражение (1.2) падения напряжения в дуговом промежутке можно записать в виде: U д= а + в · l д, (1.3) где а = U к + U а; – градиент напряжения в столбе, рав-ный 1…4 В/мм или в среднем – 2,5 В/мм. Таким образом, падение напряжения в столбе дуги длиной 4 мм составляет: U ст= в ∙ l д=2,5∙4=10 В.
Основным свойством любой электрической цепи, в том числе и сварочной дуги, является способность проводить ток, которая оценивается с помощью вольт-амперной характеристики (ВАХ). Зависимость напряжения на дуге от её тока в установившемся режиме (при постоянстве длины и проводимости дугового промежутка) называется статической вольт-амперной характерис-тикой дуги, т. е. U д= f (I св) при l д = const. Статическая ВАХ сварочной дуги содержит три участка: падающий, жёсткий и возрастающий (рис. 1. 2). Для объяснения природы появления этих трех участков ВАХ сварочной дуги (газового проводника) можно воспользоваться с некоторой погрешностью законом Ома [1]: (1.4) где ρ – удельное электросопротивление дуги, мкмОм·м; S ст – площадь сечения столба дуги, мм2; j ст = – плотность тока, А/мм2; – электропроводность дуги; l ст, l д – соответственно длина столба дуги и длина дуги, мм. Можно принять l cт ≈ l д, мм,ввиду малых значений l к и l а.
Рис. 1.2. Вольтамперные статические характеристики дуги [2]: 1 – падающий участок; 2 – жесткий участок; 3 – возрастающий участок Падающую вольт-амперную характеристику имеет дуга при сварочном токе до 80…100 А (cм рис. 1.2 – участок 1). На этом участке в сварочной дуге с увеличением сварочного тока более интенсивно протекает ионизация, возрастает проводимость столба дуги γст и увеличивается площадь его поперечного сечения S ст, которые в уравнении (1.4) находятся в знаменателе и приводят к снижению напряжения дуги. Кроме того, увеличение силы тока в пределах этого участка сопровождается опережающим темпом роста площади катодного пятна с диаметром d к, что приводит к уменьшению плотности тока j ст, а, следовательно, и к снижению напряжения на дуге. Сварочная дуга с падающей вольт-амперной характеристикой имеет малую устойчивость. Жесткую вольт-амперную характеристику имеет сварочная дуга при токах от 80 до 350 А (cм. рис. 1.2– участок 2). На этом участке увеличение тока сопровождается пропорциональным в столбе дуги возрастанием его площади поперечного сечения и поэтому плотность тока j ст не изменяется. Проводимость дугового промежут-ка γст при этом остается без изменения, поскольку температура дуги достигает своего максимального значения. В результате падение напряжения на дуге тоже не изменяется. Таким образом, в области практических режимов сварки напряжение на дуге не зависит от тока (жесткий участок), а зависит только от длины дуги (см. уравнение 1.5). Такая дуга широко применяется в сварочной технике. Возрастающую вольт-амперную характеристику имеет сварочная дуга при токах от 300 А и выше (см. рис. 1. 2 – участок 3). На этом участке при увеличении сварочного тока напряжение дуги снова возрастает. Напряжение дуги в этом случае растет не за счет увеличения площади поперечного сечения активного пятна катода, которое занимает весь торец электрода, а вследствие увеличения плотности тока j ст. Особенности дуги переменного тока Устойчивость горения сварочной дуги переменного тока, ниже, чем дуги постоянного тока. Это связано с тем, что переменный ток частотой 50 Гц в дуге 100 раз в секунду (через каждые 0,01 с) проходит через нуль (рис. 1.3). В процессе перехода тока через нуль и изменения полярности в начале и конце каждого полупериода дуга угасает. При этом снижается температура дуги, снижается ионизация газовой смеси в приэлектродных областях и в столбе дуги, уменьшается проводимость дугового промежутка. До тех пор, пока напряжение источника тока U и меньше напряжения повторного зажигания U з (пика зажигания), дуга загореться не может. При синусоидальной кривой напряжения источника питания загорание дуги произойдёт через промежуток времени t в в точке А, когда величина напряжения источника U и достигнет напряжения зажигания U з. После зажигания дуги будет происхо-дить изменение напряжения на дуге U д и в точке В, в которой напряжение источника станет ниже напряжения горения дуги, дуга погаснет. Синусоидальность напряжения приводит к тому, что при смене полярности дуга переменного тока загорается не сразу, а спустя некоторое время, соответствующее времени возбуждения дуги t в, пока синусоидальное напряжение источника U и не достигнет значения зажигания дуги U з в точке А 1 (см. рис. 1.3).
Интервал времени от времени угасания τу до времени возбужде-ния τв называется временем перерыва t п в горении сварочной дуги. В этот интервал времени ток I д, протекающий по сварочному контуру, не равен нулю. Это объясняется тем, что в дуговом промежутке в данный момент времени активное пятно катода еще способно излучать электроны, а также наличием плазменных потоков в столбе дуги. В дуговом промежутке в течение времени t п наблюдается тлеющий разряд, а не дуговой. В момент времени τ = τ внапряжение дуги U ддостигает необходимого значения напряжения повторного возбуждения сварочной дуги Uз и в дуговом промежутке создается напряженность электрического поля такого значения, при котором начинается интенсивное зарождение свободных электронов, приводящее к восстановлению дугового разряда. Для повышения стабильности горения дуги переменного тока необходимо, чтобы время перерыва (τ в +τ у) было по возможности меньше. Значение времени перерыва можно определить из закона синусоидальности переменного тока: U 3= U T ∙ sin (ω τ в), (1.5) отсюда sin (ω τ в)= U 3 / U T, где ω – угловая частота тока, равная (ω = 2 π f). Отсюда тогда время перерыва составит τ в + τ у ≈ 2 τ в = (1.6) Из выражения (1.6) следует, что повысить стабильность горения дуги переменного тока, т. е. уменьшить время перерыва τ в+ τ у в горе-нии сварочной дуги, можно осуществить: 1) увеличением амплитудного значения напряжения источника питания U т, т. е. напряжения холостого хода U х сварочного трансформатора. Однако повышение напряжения холостого хода ограничено условиями электробезопасности при проведении сварочных работ и технико-экономическими показателями источников питания (увеличение габаритных размеров источника питания, расход обмоточных материалов и т. д.). Поэтому для источников питания переменного тока принято отношение между напряжением холостого хода источника и напряжением дуги U х/ U д > 1,8…2,5. Напряжение холостого хода не должно превышать 80…90 В; 2) увеличением частоты переменного тока, что требует дополнительных устройств (см. работу № 2 – инверторные источники); 3) снижением напряжения зажигания дуги за счет введения в состав покрытия электродов веществ с низким потенциалом ионизации. В зависимости от толщины покрытия электроды разделяются на тонкопокрытые, с толщиной слоя обмазки 0,1…0,3 мм и толстопокрытые, с толщиной слоя обмазки до 2 мм. Тонкие покрытия предназначаются для увеличения устойчи-вости горения дуги и поэтому часто называются ионизирующими покрытиями. Наиболее распространённым ионизирующим покры-тием является меловое, состоящее по массе из 80…85 % мелко просеянного мела СаСО3 и 15…20 % жидкого натриевого стекла Na2O·SiO2. Сварные швы, выполненные этими электродами, из-за отсутствия защиты расплавленного металла обладают низким пределом прочности и низкой пластичностью. Для получения сварных швов с высокими показателями прочности и пластичности пользуются электродами с толстым покрытием. Поэтому эти покрытия называют качественными. Качественное покрытие выполняет следующие функции: обеспечивает устойчивое горение дуги; защищает расплавленный металл шва от воздействия кислорода и азота воздуха; раскисляет образующиеся в металле шва оксиды и удаляет невосстанавливаемые оксиды в шлак; изменяет состав наплавляемого металла вводом в него легирующих примесей; удаляет серу и фосфор из расплавленного металла шва. К первой группе можно отнести ионизирующие вещества, которые вводятся для снижения эффективного потенциала ионизации (табл. 1.1). Они обеспечивают стабильное горение дуги. Таблица 1.1 Значение потенциалов ионизации металлов, применяемых в покрытиях
В основном это соли щелочных и щелочноземельных металлов (К, Na, Ca, Ва, Li и др.). Они чаще применяются в виде: 1) углекислых солей: мел (мрамор) СаСО3, поташ К2СО3, углекислый барий ВаСО3, сода Na2CO3; 2) соединений: хромата калия K2CrO4, титанового концентрата (FeO∙TiO2), марганцевой руды (MnO2∙Mn2O3), полевого шпата (К2О∙Al2O3∙6SiO2), плавикового шпата (CaF2) и др. Ионизация газовой среды характеризуется степенью ионии-зации, т. е. отношением числа заряженных частиц в данном объеме к первоначальному числу частиц (до начала ионизации). При полной ионизации степень ионизации будет равна единице. Из рис. 1.4. вид-но, что при температурах 6000…8000 ºС такие вещества как калий, натрий, кальций и другие обладают достаточно высокой степенью ионизации. Ко второй группе относятся газообразующие, и шлакообра-зующие вещества, которые создают в зоне дуги газовую защитную оболочку, а в зоне шва – шлаковую защиту расплавленного металла шва. К газообразующим можно отнести неорганические (мрамор СаСО3, магнезит МgСО3 и др.) и органические (крахмал, древесная мука и т. п.) вещества. Все эти вещества образуют защитный барьер из CO2 вокруг сварочной ванны.
При помощи шлакообразующих компонентов вокруг сварочной ванны создается защитная шлаковая пленка, препятствующая окисли-тельным процессам. Они представляют собой руды (титановые и марганцевые) и различные минералы (полевой шпат, гранит, кремнезем, плавиковый шпат). Третью группу представляют легирующие вещества, которые в процессе сварки переходят из покрытия в металл шва и легируют его для придания тех или иных физико-механических свойств. К этой же группе можно отнести раскисляющие вещества, которые благо-даря большому сродству к кислороду очищают металл шва от окис-лов и выводят их в шлак. Легирующие элементы и раскислители – кремний, марганец, титан, алюминий и другие, а также сплавы этих элементов с железом в виде ферромарганца, ферросилиция и ферро-титана. Их применяют для наполнения сварочной ванны легирую-щими элементами, придавая металлу нужный состав. Алюминий как раскислитель вводится в покрытие в виде порошка-пудры; К четвёртой группе - связующие вещества для придания покрытию монолитности и определенной прочности после его высыхания. В качестве связующего вещества, как уже упоминалось, часто применяют водные растворы силикатов натрия, называемые жидким стеклом Na2O·SiO2. Для повышения производительности (для увеличения количест-ва наплавляемого металла в единицу времени) и облегчения повтор-ного зажигания дуги в электродные покрытия вводят железный поро-шок. Его содержание может достигать до 60 % массы покрытия. Таким образом, во все группы веществ, образующих покрытие, входят элементы (см. табл. 1.1 и рис. 1.4) с низким потенциалом ионизации в виде различных химических соединений.
|
|||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 1155; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.43.194 (0.009 с.) |