Органеллы специального значения.
Специальные органеллы – имеются лишь в некоторых клетках и обеспечивают выполнение специализированных функций. К ним относят реснички, жгутики, микроворсинки, акросомы. Специальные органеллы образуются в ходе развития клетки как производные органелл общего значения
Реснички и жгутики – органеллы специального значения, участвующие в процессах движения – представляют собой выросты цитоплазмы, основу которых составляет каркас из микротрубочек, который носит название осевой нити, или аксонемы. Аксонема образована 9 периферическими парами микротрубочек и одной центрально расположенной парой. Центральная пара микротрубочек окружена центральной оболочкой, от которой к периферическим дублетам расходятся радиально спицы. Периферические дублеты связаны собой мостиками нексина, а от микротрубочки А к микротрубочке В соседнего дуплета отходят “ручки” из белка динеина, который обладает активность. АТФ-азы.
В основании каждой реснички или жгутика лежит базальное тельце, по своему строению сходна с центриолью. На уровне апикального конца тельца заканчивается микротрубочка С триплета, а микротрубочки А и В продолжаются в соотверствуюцие микротрубочки аксонемы реснички или жгутика. При развитии реснички или жгутика базальное тельце играет роль матрицы, на которой происходит сборка компонентов аксонемы.
Ядро клетки. Строение и функции.
Ядерный аппарат эукариотических клеток представлен ядром. У прокариот ядерный аппарат называют нуклеоидом.
Ядро – часть клетки, в которой локализуются хромосомы и формируются макромолекулы, контролирующие синтез веществ (и-РНК, т-РНК, р-РНК). Расположено в центре клетки или смещено.
В составе ядра выделяют:
1. Поверхностный аппарат ядра, или кариолемму.
2. Кариоплазму, кариолимфу, или ядерный сок.
3. Ядерный матрикс
4. Хроматин.
Функции ядра:
Хранение генетической информации
Реализация генетической информации
Воспроизведение и передача генетической информации
Строение ядерной оболочки.
Наружная мембрана: составляет единое целое мембранами гранулярной ЭПС – на ее поверхности имеются рибосомы, а перинуклеарное пространство соответствует полости цистерн гранулярной ЭПС.
Внутренняя мембрана – гладкая, ее интегральные белки связаны с ламиной – слоем, состоящим из переплетенных промежуточных филаментов.
Роль ламины:
- Поддержка формы ядра
- Упорядочивание укладки хроматина
- Структурная организация поровых комплексов
- Формирование кариолеммы при делении клеток.
Ядерные поры. Поря, содержат 2 параллельных кольца (по одному с каждой поверхности кариолеммы), которые образованы 8 белковыми гранулами. От этих гранул к центру сходятся фибриллы, формирующие перегородку, в середине которой лежит центральная гранула. Совокупность структур, связанных с ядерной порой, называется комплексом ядерной поры.
Функции комплекса ядерной поры:
- Обеспечение регуляции избирательного транспорта веществ между цитоплазмой и ядром
- Активный перенос в ядро белков, имеющих особую маркировку.
- Перенос в цитоплазму субъединиц рибосом; их транспорт сопровождается изменением конформации комплекса.
Хроматин.
Различают 2 вида хроматина:
Эухроматин соответствует сегментам хромосом, которые деспирализованы и открыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом. Он интенсивно окрашивается основными красителями, и в световой микроскоп имеет вид гранул.
Тельце Барра – скопление гетерохроматина, соответствующее одной Х-хромосоме у особей женского пола, которое в интерфазе плотно скручено. Выявление тельца Барра используется как диагностический тест для определения генетического пола.
Компактная упаковка ДНК в ядре обеспечивает:
- Упорядоченное расположение очень длинных молекул ДНК в небольшом объеме ядра.
- Функциональный контроль активности генов.
Уровни упаковки хроматина:
- Обеспечивает образование нуклеосомной нити, обусловленной намоткой двух нитей ДНК на блоки из 8 гистоновых молекул.
- Приводит к скручиванию нуклеосомной нити с образованием нуклеотиновой фибриллы.
- Хроматиновые фибриллы образуют петли, каждая из которых соответствует 1 или нескольким генам, которые формируют участки конденсированных хромосом, которые выявляются при делении клетки.
Реализация генетической информации в интерфазном ядре непрерывно протекает благодаря процессам транскрипции. При транскрипции ДНК образуется крупная РНК, которая связывается с ядерными белками с образованием рибонуклеоидов. Процессинг включает отщепление интронов и стыковку экзонов - сплайсинг. При этом молекула РНК превращается в мелкие и-РНК, отделяющиеся от связанных с ними белков при переносе в цитоплазму.
Ядерный сок (кариолимфа).
Кариолимфа близка по составу к гиалоплазме. Обеспечивает транспорт веществ и ядерных структур и взаимодействие между ними.
Ядрышко.
Ядрышко – самая плотная структура ядра, является производным хромосомы с наиболее высокой концентрацией и активностью синтеза РНК в интерфазе. Образуется на вторичной перетяжке ядрышкоовй хромосомы. Место образования субъединиц рибосом. В профазе ядрышко распадается, в телофазе вновь формируется
Функция:
Формирование субъединиц рибосом из РНК и собственного белка, которые через поры выходят из ядра и собираются в цитоплазме в рибосому.
Обмен веществ и превращение энергии в клетке.
Энергетический обмен в клетке.
Основой всех проявлений жизнедеятельности клеток является обмен веществ с окружающей средой. Благодаря биохимическим реакциям, все процессы клеток являются строго упорядоченными. Клетка – высокоорганизованная структура, в которой экономично расходуются материалы и энергия, процессы идут с высоким КПД (КПД митохондрий 45-60%, хлоропластов – 25%).
Обмен веществ состоит из ассимиляции и диссимиляции. Ассимиляция (анаболизм) – пластический обмен, при котором происходит синтез всех органических веществ. Все биосинтезы идут с поглощением энергии, которая запасается в виде АТФ при диссимиляции (катаболизме) – энергетическом обмене.
Этапы энергетического обмена:
Подготовительный – происходит расщепление сложных органических веществ до более простых под действием пищеварительных ферментов. Высвобожденная энергия рассеивается в виде тепла.
- В анаэробных условиях (без О2) у анаэробов субстрат расщепляется с образованием конечных продуктов еще богатых энергией.
- Гликолиз – расщепление глюкозы ферментами клетки в отсутствии кислорода. В результате 40% энергии глюкозы запасется в 2 молекулах АТФ, 60% утрачивается в виде теплоты. Гликолиз осуществляется в гиалплазме клетки и не связан с мембранами.
С6Н12О6 + 2АДФ + 2Н3РО4 = 2С3Н6О3 + 2АТФ +2Н2О
|
Спиртовое брожение
Глюкоза →пируват→ацетальдегид→этанол. КПД = 29%.
С6Н12О6 + 2АДФ + 2Н3РО4 = 2С2Н5ОН + 2АТФ +2Н2О + 2СО2
|
- В аэробных условиях (с О2) – субстрат без остатка расщепляется до бедных энергией неорганических веществ с высвобождением большого количества энергии. Протекает в 2 этапа:
А. Аналогично гликолизу, но только до пирувата С3Н4О3 (субстратное фосфолирирование):
С6Н12О6 = 2С3Н4О3 + 2АТФ + 2НАДН + Н+
В. Пируват и НАДН2 поступают в митохондрии, где пируват окисляется до ацилКоА.
С3Н4О3 + КоАSH + HAД+ = СН3СО3SКоА + НАДН2 + СО2
|
Ацетилкоэнзим А направляется в ЦТК (цикл трикарбоновых кислот (цикл Кребса), а НАДН в дыхательную цепь. ЦТК идет в матриксе митохондрий: ацетилКоА присоединяется к щавелевоуксусной кислоте и т.д.
В результате образуется:
АТФ + 2СО2 +КоА = 3НАДН + 3Н+ + ФАДН2
| ФАД – флавинадениндинуклеотид.
Вся энергия глюкозы оказывается сосредоточенной в переносчиках НАДН +Н+ и ФАДН2. Они переносят по 2Н+ цепь переноса электронов и затем снова могут присоединять Н+.
Атомы Н переносятся через внутреннюю мембрану митохондрий и на ее наружней поверхности разделяются на Н+ и электрон.
Реакции образования АТФ:
1. Н поступает на внутреннюю поверхность митохондрий, образуют кристы:
А. Н+ выходят из клетки на поверхность. Для Н+ мембрана проницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.
В. Электроны переносятся на внутреннюю поверхность мембраны крист и присоединяются и присоединяются к кислороду с помощью фермента оксидизы, образуя:
С. Н+ и О2- создают разноименно заряженное электрическое поле, когда Δφ = 200мВ начинает действовать протонный канал. Он возникает в АТФ-синтеазе, которая встроена во внутреннюю мембрану митохондрий.
D. Через канал Н+ устремляются внутрь митохондрий, создавая высокий уровень энергии, которая идет на синтез АТФ из АДФ и фосфата.
Итог: при расщеплении 1 молекулы глюкозы образуется 38 молекул АТФ, с запасом энергии 1520 кДж. Образовавшиеся АТФ выходят из митохондрий.
Значение АТФ в энергетическом обмене:
A. Образовавшаяся молекула АТФ выходит из митохондрий и участвует во всех процессах, требующих энергию.
a. В процессах синтеза веществ.
b. Участвует в процессах движения.
c. В процессе деления клетки.
d. Транспорт веществ.
При расщеплении АТФ отдает энергию (1 фосфатная связь заключает 40 кДж). Образовавшаяся АДФ и фосфат возвращаются в митохондрии.
Автотрофные и гетеротрофные организмы.
По питанию организмы делятся на автотрофные и гетеротрофные. Автотрофы ассимилируют свои органические вещества из неорганических (Н2О, СО2, СН4) используя: энергию солнца – фотоавтотрофы (зеленые растения, цианобактерии), или энергию химических реакций – хемоавтотрофы (хемосинтезирующие бактерии). Гетеротрофы – используют органические вещества, поступающие с пищей, расщепляются до мономеров, для процессов ассимиляции используется энергия, высвобожденная при диссимиляции органических веществ.
Пластический обмен. Фотосинтез.
Фотосинтез:
Фотосинтез – процесс образования органических веществ в хлоропластах из неорганических веществ под действием света.
Фотосинтез состоит из световой и темновой фазы. Реакции на свету протекают в гранах (тилакоидах), реакции, не требующих света, темновые – в строме хлоропластов.
Световые реакции:
А. Свет возбуждает молекулы хлорофилла мембранах тилакоидов, электроны сходят с орбит и переносятся за пределы мембраны тилакоидов, создавая заряженное электрическое поле.
В. Место вышедших электронов, занимают электроны, занимают электроны образовавшиеся в результате разложения воды под светом (фотолиза):
H2O = OH- +H+; OH- - e- = OH
| С. ОН объединяются в воду и кислород, который выделяется в атмосферу.
D. Протоны Н+ не проникают через мембрану тилакоида и накапливаются внутри, образуя положительно заряженное электрическое поле, что приводит к Δφ по обе стороны мембраны. Пари достижения критической разности потенциалов Н+ устремляются по протонному каналу в ферменте АТФ-синтеазе, встроенный в мембрану тилакоида, наружу. На выходе создается высокий уровень энергии, который идет на синтез АТФ из АДФ с присоединением фосфата. Образовавшиеся молекулы переходят в строму, где участвуют в реакциях фиксации углерода.
E. Н+ вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ+:
Активированный световой энергией электрон хлорофилла используется для присоединения водорода к НАДФН, переходит в строму хлоропласта, участвуя в реакциях фиксации углерода.
Темновые реакции:
Темновая фаза фотосинтеза представляет собой ряд последовательных реакций. В результате этих реакций из СО2 и Н2О образуются углеводы.
СО2 поступает в лист из окружающей среды, Н2 образуется в световой фазе. Источником энергии служит АТФ, которая синтезируется в световую фазу. Эти вещества транспортируются в хлоропласты.
Темновые реакции идут в строме хлоропластов, куда поступают АТФ, НАДФН, от тилакоидов гран и СО2 из воздуха. Кроме того, там находятся пентозы С5, которые образуются в цикле фиксации СО2 (цикле Кальвина).
Цикл Кальвина:
a. К пентозе С5 присоединяется СО2 с образованием нестойкой гексозы С6, которая расщепляется на 2 триозы (2С3).
b. Каждая из триоз 2С3 принимает по одной фосфатной группе от 2 АТФ, что обогащает молекулы триоз энергией.
c. Каждая из триоз 2С3 принимает по одному атому Н от 2 НАДН, после чего триозы объединяются:
2С3 → С6 → С6Н12О6 (глюкоза).
| d. Другие С3 объединяются, образуя пентозы: 5С3 → 3С5, которые заново включаются к цикл фиксации СО2.
Суммарное уравнение фотосинтеза:
6СО2 + 6Н2О → С6Н12О6 + 6О2
|
Хемосинтез.
Тип обмена, с помощью которого бактерии мобилизуют энергию был открыт русским ученым микробиологом С.Н. Виноградским. Бактерии обладают специальным ферментным аппаратом, позволяющим преобразовывать энергию химических реакций.
В природе органическое вещество создает не только зеленые растения, но и бактерии, не содержащие хлорофилла. Органические вещества создаются путем хемосинтеза.
Хемосинтез – синтез органических веществ с использованием энергии, освобождающейся при химических реакциях (окисление неорганических соединений). Энергия, получаемая при окислении, запасается в организме в форме АТФ.
Виды бактерий:
A. В водоемах, содержащих H2S, живут серобактерии. Они окисляют H2S.
2H2S + O2 = 2S + 2H2O + E
| B. Сера поглощается включениями. При недостатке сероводорода бактерии окисляют серу далее:
C. Нитробактерии окисляют NH3 до HNO2:
2NH3 + 3O2 = 2HNO2 + 2H2O + E (662кДж).
| D. Далее HNO2 окисляется до HNO3:
2NHO2 + O2 = 2HNO3 + E (101кДж).
| E. Процесс нитрификации происходит в почве в огромных масштабах, служит источником нитратов для растений.
F. Железобактерии – бактерии, превращающие закислое железо в кислое:
4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2 + E (324кДж)
| Значение: Накопление нитратов; питание растений; круговорот веществ в природе; накапливаются железные руды – результат действия бактерий.
Гистология.
Ткани (Т) являются главным обьектом в гистологии, поэтому определение понятия Т составляет актуальную задачу. Было предложено более 100 вариантов определений понятия Т. Приведу нескольких из них: 1. АА Заварзин — Т — это филогенетически обусловленная система гистологических элементов, обьединенных общей структурой, функцией и развитием. 2. НГ Хлопин — Т — филогенетически обусловленные, взаимосвязанные и подчиненные целому организму частные системы, развивающиеся из определенных эмбриональных зачатков, состоящие из клеток и их производных, и характеризующиеся определенной совокупностью морфофизиологических свойств. 3. Ткань — это эволюционно сложившаяся система клеток и неклеточных структур, имеющих общий принцип строения, общую функцию, иногда и общий источник эмбрионального развития. Первая попытка систематизации тканей принадлежит французскому анатому Ксавье Биша, который в 1801 г выделял 21 разновидности тканей на макроскопическом уровне. В 1835-37 гг Лейдиг и Келликер (нем) основываясь на микроскопических исследованиях предложили классификацию тканей. Они выделяли 4 группы тканей: эпителиальные, соединительные, мышечные, нервные. НГ Хлопин создал теорию дивергентного развития тканей в фило- и онтогенезе т.е. объяснил как и какими путями происходило развитие и становление тканей. Соответственно этой теории Хлопин выдвинул генетическую классификацию тканей. Согласно Хлопину из 8 зачатков — энтодермы, целомической выстилки, энтомезенхимы, миотомов, хорды, кожной эктодермы, нейроэктодермы, прехордальной пластинки — в ходе дивергентной дифференцировки путем расхождения признаков образуются все виды тканей; поэтому в основу этой классификации Т положены источники развития. АА Заварзин обратил внимание на сходное строение тканей, выполняющих одинаковую функцию т.е. строение объясняется функцией и создал теорию параллельных рядов тканевой эволюции. Эта теория дополняет теорию дивергентной эволюции тканей Хлопина и объясняет, почему развитие Т шло так, а не иным путем, раскрывает причинные аспекты эволюции тканей. В соответствие с теорией параллельных рядов Заварзин придерживался и обосновывал морфофункциональную классификацию тканей: система пограничных тканей, система тканей внутренней среды, система мышечных тканей, ткани нервной системы. Таким образом, в организме различают 4 системы тканей: 1. Система эпителиальных тканей. 2. Система соединительных тканей (тканей внутренней Среды). 3. Система мышечных тканей. 4. Система нейральных (нервных) тканей. СИСТЕМА ЭПИТЕЛИАЛЬНЫХ ТКАНЕЙ. Эпителиальные ткани (ЭТ) в фило- и онтогенезе образуются первыми, т.е. древнейшяя гистологическая система. Для ЭТ характерны следующие отличительные свойства: 1. Пограничность — ЭТ покрывают наружные поверхности органов и внутренние поверхности полостей, т.е. разграничивают внутреннюю среду организма от окружающей среды и среды полостей. 2. Состоит только из клеток, межклеточное вещество практически отсутствует. 3. Клетки лежат плотно друг к другу, образуя сплошной пласт. 4. Эп. всегда располагается на базальной мембране (углеводнобелково- липидный комплекс с тончайшими фибриллами) и им отграничивается от подлежащей рыхлой соединительной ткани. 5. Эп. не имеет собственных кровеносных сосудов, питается диффузно через базальную мембрану, за счет сосудов подлежащей рыхлой соединительной ткани. 6. Эпителию характерно гетерополярность — апикальные (верхушка) и базальные части клеток отличаются по строению и по функции; а в многослойном эпителии — отличие в строении и функции слоев. 7. Характерно повышенная регенераторная способность, обусловленная пограничностью — чаще чем другие ткани подвергается воздействию неблагоприятных факторов и чаще гибнут клетки, отсюда необходимость в высокой регенераторной способности. 8. Эпителиоциты могут иметь органоиды специального назначения: - реснички (эпителий воздухоносных путей); - микроворсинки (эпителий кишечника и почек); - тонофибриллы (эпителий кожи). 9. Функции: - защитная; - разграничительная; - участие в обмене веществ между организмом и окружающей средой; - секреторная. КЛАССИФИКАЦИЯ.
Для системы ЭТ используется 2 классификации — морфофункциональная (по строению и функции) и гистогенетическая (по происхождению или источникам развития). Гистогенетическая классификация: 1. Эп. кожного типа (эктодермальные) — многослойный плоский ороговевающий и неороговевающий эп.; эп. слюнных, сальных, молочных и потовых желез; переходный эпителий мочеиспускательного канала; многорядный мерцательный эп. воздухоносных путей; альвеолярный эп. легких; эп. щитовидной и паращитовидной железы, тимуса и аденогипофиза. 2. Эпителии кишечного типа (энтеродермальный) — однослойный призматический эп. кишечного тракта; эп. печени и поджелудочной железы. 3. Эпителий почечного типа (нефродермальный) — эпителий нефрона. 4. Эпителий целомического типа (целодермальный) — однослойный плоский эпителий серозных покровов (брюшины, плевры, околосердечной сумки); эп. половых желез; эп. коры надпочечников. 5. Эпителий нейроглиального типа — эпиндимный эп. мозговых желудочков; эп. мозговых оболочек; пигментный эп. сетчатки глаза; обонятельный эп.; глиальный эп. органа слуха; вкусовой эп.; эп. передней камеры глаза; хромофобный эп. мозгового слоя надпочечников; периневральный эпителий. Морфофункциональная классификация (применяется чаще): I. Однослойный эпителий. 1. Однослойный однорядный эпителий. а) однослойный плоский; б) однослойный кубический; в) однослойный цилиндрический (призматический): - однослойный призматический каемчатый - однослойный призматический железистый - однослойный призматический мерцательный 2. Однослойный многорядный мерцательный эпителий. II. Многослойный эпителий. 1. Многослойный плоский неороговевающий 2. Многослойный плоский ороговевающий 3. Переходный В однослойном эп. все клетки без исключения непосредственно связаны, (контактируют) с базальной мембраной. В однослойном однорядном эпителии все клетки контактируют с базальной мембраной; имеют одинаковую высоту, поэтому ядра располагаются на одном уровне. Однослойный плоский эпителий — состоит из одного слоя резко уплощенных клеток полигональной формы (многоугольной); основание (ширина) клеток больше, чем высота (толщина); в клетках органоидов мало, встречаются митохондрии, одиночные микроворсинки, в цитоплазме видны пиноцитозные пузырьки. Однослойный плоский эпителий выстилает серозные покровы (брюшина, плевра, околосердечная сумка). В отношении эндотелия (клетки выстилающие кровеносные и лимфатические сосуды, полости сердца) среди гистологов единого мнения нет: одни относят эндотелий однослойному плоскому эпителию, другие — к соединительной ткани со специальными свойствами. Источники развития: эндотелий развивается из мезенхимы; однослойный плоский эпителий серозных покровов — из спланхнотомов (вентральная часть мезодермы). Функции: разграничительная, уменьшает трение внутренних органов путем выделения серозной жидкости. Однослойный кубический эпителий — на срезе у клеток диаметр (ширина) равен высоте. Встречается в выводных протоках экзокринных желез, в извитых почечных канальцах. Однослойный призматический (цилиндрический) эпителий — на срезе ширина клеток меньше чем высота. В зависимости от особенностей строения и функции различают: - однослойный призматический железистый, имееется в желудке, в канале шейки матки, специализирован на непрерывную выработку слизи; - однослойный призматический каемчатый, выстилает кишечник, на апикальной поверхности клеток имеется большое количество микроворсинок; специализирован на всасывание. - однослойный призматический реснитчатый, выстилает маточные трубы; на апикальной поверхности эпителиоциты имеют реснички. Регенерация однослойного однорядного эпителия происходит за счет стволовых (камбиальных) клеток, равномерно разбросанных среди других дифференцированных клеток. Однослойный многорядный мерцательный эпителий — все клетки контактируют с базальной мембраной, но имеют разную высоту и поэтому ядра располагаются на разных уровнях, т.е. в несколько рядов. Выстилает воздухоносные пути. В составе этого эпителия различают разновидности клеток: - короткие и длинные вставочные клетки (малодифференцированные и среди них стволовые клетки; обеспечивают регенерацию); - бокаловидные клетки — имеют форму бокала, плохо воспринимают красители (в препарате — белые), вырабатывают слизь; - реснитчатые клетки, на апикальной поверхности имеют мерцательные реснички. Функция: очистка и увлажнение проходящего воздуха. Многослойный эпителий — состоит из нескольких слоев клеток, причем с базальной мембраной контактирует только самый нижний ряд клеток. 1. Многослойный плоский неороговевающий эпителий — выстилает передний (ротовая полость, глотка., пищевод) и конечный отдел (анальный отдел прямой кишки) пищеварительной системы, роговицу. Состоит из слоев: а) базальный слой — цилиндрической формы эпителиоциты со слабобазофильной цитоплазмой, часто с фигурой митоза; в небольшом количестве стволовые клетки для регенерации; б) шиповатый слой — состоит из значительного количества слоев клеток шиповатой формы (), клетки активно делятся. в) покровные клетки — плоские, стареющие клетки, не делятся, с поверхности постепенно слущиваются. Источник развития: эктодерма. Прехордальная пластинка в составе энтодермы передний кишки. Функция: механ. защита. 2. Многослойный плоский ороговевающий эпителий — это эпителий кожи. Развивается из эктодермы, выполняет защитную функцию — защита от механических повреждений, лучевого, бактериального и химического воздействия, разграничивает организм от окружающей среды. Состоит из слоев: а) базальный слой — во многом похож на аналогичный слой многослойного неороговевающего эпителия; дополнительно: содержит до 10% меланоцитов — отросчатые клетки с включениями меланина в цитоплазме — обеспечивают защиту от УФЛ; имеется небольшое количество клеток Меркеля (входят в состав механорецепторов); дендритические клетки с защитной функцией путем фагоцитоза; в эпителиоцитах содержатся тонофибриллы (органоид спец. назначения — обеспечивают прочность). б) шиповатый слой — из эпителиоцитов с шиповидными выростами; встречаются дендроциты и лимфоциты крови; эпителиоциты еще делятся. в) зернистый слой — из нескольких рядов вытянутых уплощенно-овальных клеток с базофильными гранулами кератогиалина (предшественник рогового вещества — кератина) в цитоплазме; клетки не делятся. г) блестящий слой — клетки полностью заполнены элаидином (образуется из кератина и продуктов распада тонофибрилл), отражающим и сильно преломляющим свет; под микроскопом границ клеток и ядер не видно. д) слой роговых чешуек — состоит из роговых пластинок из кератина, содержащих пузырьки с жиром и воздухом, кератосомы (соответствуют лизосомам). С поверхности чешуйки слущиваются. 3. Переходный эпителий — выстилает полые органы, стенка которых способна сильному растяжению (лоханка, мочеточники, мочевой пузырь). Слои: - базальный слой (из мелких темных низкопризматических или кубических клеток — малодифференцированные и стволовые клетки, обеспечивают регенерацию; - промежуточный слой — из крупных грушевидных клеток, узкой базальной частью, контактирующий с базальной мембраной (стенка не растянута, поэтому эпителий утолщен); когда стенка органа растянута грушевидные клетки уменьшаются по высоте и располагаются среди базальных клеток. - покровные клетки — крупные куполообразные клетки; при растянутой стенки органа клетки уплощаются; клетки не делятся, постепенно слущиваются. Таким образом, строение переходного эпителия изменяется в зависимости от состояния органа: когда стенка не растянута, эпителий утолщен за счет «вытеснения» части клеток из базального слоя в промежуточный слой; при растянутой стенки толщина эпителия уменьшается за счет уплощения покровных клеток и перехода части клеток из промежуточного слоя в базальный. Источники развития: эп. лоханки и мочеточника — из мезонефрального протока (производное сегментных ножек), эп. мочевого пузыря — из энтодермы аллантоиса и энтодермы клоаки. Функция — защитная. ЖЕЛЕЗИСТЫЙ ЭПИТЕЛИЙ Железистый эп. (ЖЭ) специализирован на выработку секрета. ЖЭ образует железы: I. Эндокринные железы — не имеют выводных протоков, секрет выделяется непосредственно в кровь или лимфу; обильно кровоснабжаются; вырабатывают гормоны или биологически активные вещества, оказывающие сильное регулирующее влияние на органы и системы даже в небольших дозах. II. Экзокринные железы — имеют выводные протоки, выделяют секрет на поверхность эпителия (на наружные поверхности или в полости). Состоят из концевых (секреторных) отделов и выводных протоков. Принципы классификации экзокринных желез: I. По строению выводных протоков: 1. Простые — выводной проток не ветвится. 2. Сложные — выводной проток ветвится. II. По строению (форме) секреторных отделов: 1. Альвеолярные — секреторный отдел в виде альвеолы, пузырька. 2. Трубчатые — секр. отдел в виде трубочки. 3. Альвеолярно-трубчатые (смешанная форма). III. По соотношению выводных протоков и секреторных отделов: 1. Неразветвленные — в один выводной проток открывается один секретор- ный отдел. 2. Разветвленные — в один выводной проток открывается несколько секре- торных отделов. IV. По типу секреции: 1. Мерокриновые — при секреции целосность клеток не нарушается. Харак- терно для большинства желез. 2. Апокриновые (апекс — верхушка, кринио — выделение) — при секреции частично разрушается (отрывается) верхушка клеток (пр.: молочные железы). 3. Голокриновые — при секреции клетка полностью разрушается. Пр.: сальные железы кожи. V. По локализации: 1. Эндоэпителиальные — одноклеточная железа в толще покровного эпителия. Пр.: бокаловидные клетки в эпителие кишечника и воздухонос. путей. 2. Экзоэпителиальные железы — секреторный отдел лежит вне эпителия, в подлежащих тканях. VI. По характеру секрета: -белковые,слизистые, слизисто-белковые, потовые, сальные, молочные и т.д. Фазы секреции: 1. Поступление в железистые клетки исходных материалов для синтеза секрета (аминокислоты, липиды, минеральные вещества и т.д.). 2. Синтез (в ЭПС) и накопление (в ПК) в железистых клетках секрета. 3. Выделение секрета. Для клеток железистого эпителия характерно наличие органелл: ЭПС гранулярного или агранулярного типа (в зависимости от характера секрета), пластинчатый комплекс, митохондрии. Регенерация железистого эпителия — в большинстве железах регенерация железистого эпителия происходит путем деления малодифференцированных (камбиальных) клеток. Отдельные железы (слюнные железы, поджелудочная железа) стволовых и малодифференцированных клеток не имеют и в них происходит внутриклеточная регенерация — т.е. обновление внутри клеток изношенных органоидов, при отсутствии способности к делению клеток.
Лекции…по органам и системам.
|