Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Филогенез дыхательной системы.
У низших беспозвоночных специальные органы дыхания отсутствуют, газообмен происходит через покровы — диффузное дыхание. Энергетический обмен таких животных отличается малой интенсивностью. У многих беспозвоночных появляются приспособления, увеличивающие дыхательную поверхность в виде местных специализированных органов дыхания. У водных форм органы дыхания представлены жабрами, у наземных — легкими и трахеями.. Многие виды одновременно сохраняют диффузное дыхание. Функцию органов дыхания у низших хордовых (ланцетник) принимает на себя передняя часть кишечной трубки. В стенках глотки имеется 100—150 пар отверстий, или жаберных щелей. Органами дыхания служат межжаберные перегородки, в которых проходят кровеносные сосуды — жаберные артерии. Вода, проходя через жаберные щели, омывает названные перегородки и кислород диффундирует через стенки артерий. Поскольку жаберные артерии ланцетника не разветвляются на капилляры, общая поверхность, через которую поступает кислород, невелика, окислительные процессы идут на низком уровне. Соответственно этому ланцетник ведет малоподвижный, пассивный образ жизни. Прогрессивные изменения органов дыхания у р ы б заключаются в появлении на межжаберных перегородках многочисленных эпителиальных выростов — жаберных лепестков. Жаберные артерии рыб в отличие от ланцетника образуют в жаберных лепестках густую сеть капилляров. Жаберные щели у рыб возникают путем выпячивания стенки глотки. У кистеперых рыб появляются наряду с жабрами, органы для использования атмосферного кислорода. Таким дополнительным органом дыхания у них служит плавательный пузырь, представляющий собой парный мешковидный вырост брюшной стороны глотки, стенки которого богаты кровеносными сосудами. Пузырь соединен с глоткой короткой широкой камерой. Земноводные обладают способностью жить в наземных условиях, что обусловило дальнейшее развитие органов атмосферного дыхания в виде легких и кожи. Легкие земноводных гомологичны плавательному пузырю кистеперых рыб. Они представляют собой два мешка, соединенных с глоткой небольшой гортанно-трахейной камерой.. Как правило, стенки легочных мешков гладкие, с небольшими перегородками, дыхательная площадь мала. \. Воздухоносные пути слабо дифференцированы. В связи с недостаточным развитием легких основным органом дыхания служит кожа, в которой имеется большое количество мелких кровеносных сосудов-капилляров. Кожа рептилий выключается из дыхания, поскольку толстая роговая чешуя, защищающая рептилий от высыхания, препятствует газообмену, и легкие становятся основным органом дыхания. Дыхательная поверхность легочных мешков резко увеличивается благодаря появлению на их стенках большого количества разветвленных перегородок, в которых проходят кровеносные сосуды. Одновременно у рептилий наблюдаются прогрессивные изменения в воздухоносных путях. В трахее формируются хрящевые кольца, разделяясь, она дает два бронха. Начинается формирование внутрилегочных бронхов. Отдельные крупные перегородки вдаются глубоко в полость легкого, оставляя свободным лишь узкий центральный вход. Дистальные края перегородок покрыты мерцательным эпителием, а в наиболее крупных из них появляются хрящи. В результате образуются стенки внутрилегочных бронхов. Млекопитающие обладают легкими наиболее сложного строения. Характерен древовидный тип разветвления бронхов. Основной бронх делится на довольно большое количество вторичных бронхов, те в свою очередь распадаются на еще более мелкие бронхи 3-го порядка, а последние дают многочисленные мелкие бронхи 4-го порядка и т. д., и, наконец, идут тонкостенные трубочки — бронхиолы. На концах бронхиол находятся мелкие пузырьки, выстланные эпителием, или альвеолы. Стенки каждой альвеолы оплетены густой сетью капилляров, где и происходит газообмен. Количество альвеол достигает огромного числа, благодаря чему дыхательная поверхность резко возрастает. Таким образом, основное направление эволюции дыхательной системы заключается в увеличении дыхательной поверхности, обособлении воздухоносных путей.
(56) Биогенетический з-н. Изучая филогенез ракообразных, Ф. Мюллер обратил внимание на сходство некоторых современных личиночных форм с формами их вымерших предков. На основании этих наблюдений ой сделал заключение о том, что ныне живущие ракообразные в эмбриогенезе как бы повторяют путь, пройденный в историческом развитии их предками. Преобразования индивидуального развития в эволюции, по мнению Ф. Мюллера, происходят путем добавления новых стадий к онтогенезу родителей. Повторение в онтогенезе потомков признаков нескольких. предков объясняется накоплением таких надставок. Э. Геккель сформулировал основной биогенетический закон, в соответствии с которым онтогенез представляет собой краткое и быстрое повторение филогенеза. В качестве доказательств справедливости биогенетического закона используют примеры рекапитуляции. Они заключаются в повторении структуры органов взрослых предков на определенных стадиях индивидуального развития потомков. Так, в эмбриогенезе птиц и млекопитающих закладываются жаберные щели и соответствующие им скелетные образования и кровеносные сосуды. Многие признаки личинок бесхвостых амфибий соответствуют признакам взрослых хвостатых амфибий. В эмбриогенезе человека эпидермис кожи сначала представлен однослойным цилиндрическим, затем многослойным неороговевающим, многослойным слабо ороговевающим и, наконец, типичным ороговевающим эпителием. Соответствующие типы эпителия встречаются у взрослых хордовых — ланцетника, костистых рыб, хвостатых амфибий. Согласно Э. Геккелю, новые признаки, имеющие эволюционное значение, возникают во взрослом состоянии. По мере усложнения организации взрослых форм зародышевое развитие удлиняется за счет включения дополнительных стадий. Признаки предковых форм, повторяющиеся в онтогенезе потомков, Э. Геккелем названы палингенезами. Нарушение биогенетиче-ского закона зависит от тех изменений, не имеющих эволюционного значения, которые возникают в ходе индивидуального развития под действием внешних условий. Они могут заключаться в сдвигании процессов зародышевого развития во времени (гетерохронии) и в пространстве (г е т е р о т о п и и). Нарушения, обусловленные приспособлениями зародышей к условиям развития, Э. Геккель назвал ценогенеза-м и. Примером гетерохронии служит более ранняя закладка нервной системы и запаздывание в формировании половой системы у высшие позвоночных и человека по сравнению с низшими, гетеротопий — закладка легких, представляющих собой видоизменение задней пары жаберных мешков, расположенных по бокам кишечника, на его брюшной стороне, ценогенезов — амнион, хорион, аллантоис зародышей наземных позвоночных. Основываясь на биогенетическом законе, Э. Геккель предложил гипотезу филогенеза многоклеточных организмов. Стадии морей, бластеи, гастреи исторического развития рекапитулируют, по его мнению, в онтогенезе многоклеточных животных как стадии морулы, бластулы, гаструлы. Теория филэмбриогенезов. Решающее значение для раскрытия связи между онтогенезом и филогенезом имеют труды А. Н. Северцова. Согласно А. Н. Северцову, источником филогенетических преобразований служат изменения, возникающие на ранних этапах онтогенеза, а не у взрослых форм. Если они приводят к развитию признаков, имеющих полезное значение во взрослом состоянии и наследуются, они передаются из поколения в поколение и закрепляются. Такие признаки включаются в филогенез соответствующей группы организмов. Эмбриональные изменения, отражающиеся в дальнейшем на строении взрослых форм и имеющие эволюционное значение, называются филэмбриoгенезами, которые бывают трех типов. Эмбриогенез может изменяться путем включения дополнительной стадии к уже имевшимся стадиям без искажения последних (анаболия), или же ход эмбриогенеза нарушается в средней его части (девиация). Отклонение от обычного хода развития в начале эмбриогенеза называется архаллаксисом. Как видно, биогенетическому закону удовлетворяют изменения онтогенеза по типу анаболии. В этом случае зародышевое развитие представляет, по-существу, ряд последовательных рекапитуляции. В случае девиации рекапитуляции наблюдаются, но в ограниченном объеме, а при архаллаксисе они отсутствуют. Согласно теории филэмбриогенезов изменения на ранних стадиях индивидуального развития составляют основу филогенетических преобразований органов. Таким образом, онтогенез не только отражает ход эволюции организмов определенного вида, но, претерпевая изменения, оказывает влияние на процесс исторического развития той или иной группы животных. Из сказанного следует, что в известном смысле филогенез можно рассматривать как причину онтогенеза (Э. Геккель). Вместе с тем коль скоро эволюционно значимые изменения строения органов во взрослом состоянии происходят путем изменения эмбриогенеза этих органов, филогенез представляет собой функцию онтогенеза (А. Н. Северцов).
(59) Понятие о расах и видовое единство чел-ва. Современное человечество принадлежит к одному виду Homo sapiens. Это доказывается рождением плодовитого и полноценного потомства в скрещиваниях между представителями резко различающихся по некоторым признакам этногеографических групп населения. Видовое единство людей основывается на воспроизведении трех главных признаков рода Homo — выпрямленного положения тела, хватательного типа верхних конечностей, развитой речевой функции и мышления. Названным признакам принадлежит ведущая роль в обеспечении выживания и развития всех гоминид. Значительным консерватизмом обладают особенности строения опорно-двигательного аппарата и головного мозга, от которых зависит прямохождение, орудийная деятельность, социабильность. Представители разных этногеографических групп характеризуются одинаковым интеллектуальным потенциалом. Вместе с тем Человек разумный — это резко политипический вид, что проявляется в наличии трех «больших» рас людей и некоторого числа более мелких групп, различающихся главным образом комплексом внешних признаков. Выделяют европеоидную (евразийскую), австрало-негроидную (экваториальную) и монголоидную (азиатско-американскую) «большие» расы. Европеоиды имеют светлую или смуглую кожу, прямые или волнистые волосы, развитый волосяной покров на лице, узкий выступающий нос, тонкие губы. Монголоиды отличаются светлой или смуглой кожей, прямыми, нередко жесткими волосами, уплощенным лицом с выступающими скулами, косым разрезом глаз, выраженным «третьим веком» (эпикантом), средними показателями ширины носа и губ. У австрало-негроидов кожные покровы темные, волосы курчавые шерстистые или волнистые, губы толстые, нос широкий, маловыстугш-юший, с поперечным расположением ноздрей. Представители различных рас отличаются по некоторым физиологическим и биохимическим признакам. Так, основной обмен у негров и у большей части других народов экваториальной зоны ниже, чем у европейцев. У последних содержание холестерина в плазме крови достигают 4,64 ммоль/л, тогда как у первых — 3,48 ммоль/л.
Общность основных человеческих признаков и главной линии исторического развития, полноценность потомства в межрасовых браках указывают на то, что разделение на расы относится к достаточно продвинутым стадиям эволюции гоминид. На основании сравнительно-биохимических и антропологических данных предполагают, что первоначально в человечестве выделились монголоидная и европеоидно-негроидная расы. Позже из последней выделились евразийская и австрало-негроидная. Указанные события имели место, по-видимому, на стадии перехода от палеоантропов к неоантропам. До эпохи великих географических открытий «большие» расы характеризовались определенным расселением по планете. Представители монголоидной расы размещались на территории Северной, Центральной, Восточной и Юго-Восточной Азии, Северной и Южной Америки, австрало-негроидной — в Старом Свете к югу от тропика Рака, европеоидной - на территории Европы, Северной Африки, Передней Азии, Северной Индии. Многие расовые признаки адаптивно целесообразны в той части Ойкумены, в которой складывались и обитали расы на протяжении многих тысячелетий. К таковым относятся пигментация кожных покровов и шерстистые волосы негроидов (повышенный уровень солнечной радиации), крупные размеры носовой полости европеоидов (действие охлажденного в зимний период воздуха), эпикант, узкая глазная щель, своеобразное отложение жировой ткани на лице монголоидов (предохранение глаза от ветра, пыли, отраженного от снега солнечного света и от переохлаждения тканей лица). Можно предположить, что формирование расовых комплексов признаков происходило под действием естественного отбора. Вместе с тем следует избегать упрощенного понимания адаптивной природы таких комплексов в целом. Некоторые признаки, входящие в расовый комплекс, могли появиться в силу коррелятивной изменчивости. Так, главную роль в развитии уплощенности лица монголоидов играли, по-видимому, первичные изменения жевательного аппарата и общей конструкции лицевого скелета. В выделении внутри «больших» рас различных морфологических типов и групп могли играть роль метисация, длительное размножение в популяции с высокой степенью генетического родства, а в отношении народностей, размещавшихся по окраинам Ойкумены, — дрейф генов.
(60) Учение о биосфере. Термин «биосфера» введен австралийским геологом Э. Зюссом в 1875 г. для обозначения особой оболочки Земли, образованной совокупностью живых организмов, что соответствует биологической концепции биосферы. В указанном смысле названный термин используется рядом исследователей и в настоящее время. Представление о широком влиянии жизни на природные процессы было сформулировано В. В. Докучаевым, который показал зависимость процесса почвообразования не только от климата, но и от совокупного' влияния растительных и животных организмов. В. И. Вернадский развил это направление и разработал учение о биосфере как глобальной системе нашей планеты, в которой основной ход геохимических и энергетических превращений определяется живым веществом. Он распространил понятие биосферы не только на сами организмы, но и на среду их обитания, чем придал концепции биосферы биогеохимический смысл. Большинство явлений, меняющих в масштабе геологического времени облик Земли, рассматривались ранее как чисто физические, химические или физико-химические (размыв, растворение, осаждение, выветривание пород и т. д.). В. И. Вернадский создал учение о геологической роли живых организмов и показал, что деятельность последних представляет собой важнейший фактор преобразования минеральных оболочек планеты. С именем В. И. Вернадского связано также формирование социальн о-э кономической концепции биосферы, отражающей ее превращение на определенном этапе эволюции в ноосферу (см. главу 10) вследствие деятельности человека, которая приобретает роль самостоятельной геологической силы. Учитывая системный принцип организации биосферы, а также то, что в основе ее функционирования лежат круговороты веществ и энергии, современной наукой сформулированы биохимическая, термодинамическая, биогеоценотическая, кибернетическая концепции биосферы. Биосферой называется оболочка Земли, которая населена и активно преобразуется живыми существами. Согласно В. И. Вернадскому, биосфера — это такая оболочка, в которой существует или существовала в прошлом жизнь и которая подвергалась или подвергается воздействию живых организмов. Она включает: 1) живое вещество, образованное совокупностью организмов; 2) биогенное вещество, которое создается и перерабатывается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, сланцы, известняки и др.); 3) косное вещество, которое образуется без участия живых организмов (продукты тектонической деятельности, метеориты); 4) биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и абиогенных процессов (почвы). Структура и ф-ии б/с. Биосфера представляет собой многоуровневую систему, включающую подсистемы различной степени сложности. Границы биосферы определяются областью распространения организмов в атмосфере, гидросфере и л«тосфере. Верхняя граница биосферы проходит примерно на высоте 20 км. Таким образом, живые организмы расселены в тропосфере и в нижних слоях стратосферы. Лимитирующим фактором расселения в этой среде является нарастающая с высотой интенсивность ультрафиолетовой радиации. Практически все живое, проникающее выше озонового слоя атмосферы, погибает. В гидросферу биосфера проникает на всю глубину мирового океана, что подтверждается обнаружением живых организмов, и органических отложений до глубины 10—11 км. В литосфере область распространения жизни во многом определяется уровнем проникновения воды в жидком состоянии -живые организмы обнаружены до глубины примерно 7,5 км. Атмосфера. Эта оболочка состоит в основном из азота и кислорода. В меньших концентрациях она содержит углекислый газ и озон. Состояние атмосферы оказывает большое влияние на физические, химические и, особенно, биологические процессы на земной поверхности и в водной среде. Наибольшее значение для биологических
процессов имеют: кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего органического вещества, углекислый газ, расходуемый при фотосинтезе, а также озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Вне атмосферы существование живых организмов невозможно. Это видно на примере лишенной жизни Луны, у которой нет атмосферы. Исторически развитие атмосферы связано с геохимическими процессами, а также жизнедеятельностью организмов. Так, азот, углекислый газ, пары воды образовались в процессе эволюции планеты благодаря в значительной мере вулканической активности, а кислород— в результате фотосинтеза. Гидросфера. Вода является важной составной частью всех компонентов биосферы и одним из необходимых факторов существования живых организмов. Основная ее часть (95%) заключена в мировом океане, который занимает примерно 70% поверхности земного шара. Общая масса океанических вод составляет свыше 1300 млн. км3. Около 24 млн. км3 воды содержится в ледниках, причем 90% этого объема приходится на ледяной покров Антарктиды. Столько же воды содержится под землей. Поверхностные воды озер составляют приблизительно 0,18 млн. км3 (из них половина соленые), а рек -0,002 млн. км3. Количество воды в телах живых организмов достигает примерно 0,001 млн. км3. Из газов, растворенных в воде, наибольшее значение имеют кислород и углекислый газ. Количество кислорода в океанических водах изменяется в широких пределах в зависимости от температуры и присутствия живых организмов. Концентрация углекислого газа также варьирует, а общее количество его в океане в 60 раз превышает его количество в атмосфере. Гидросфера формировалась в связи с развитием литосферы, выделившей за геологическую историю Земли значительный объем водяного пара и так называемых ювенильных (подземных магматических) вод. Литосфера. Основная масса организмов, обитающих в пределах литосферы, сосредоточена в почвенном слое, глубина которого обычно не превышает нескольких метров. Почвы, будучи, по терминологии В. И. Вернадского, биокосным веществом, представлены минеральными веществами, образующимися при разрушении горных пород, и органическими веществами - продуктами жизнедеятельности организмов. Живые организмы (живое вещество). В настоящее время описано около 300 тыс. видов растений и более 1,5 млн. видов животных. Из этого количества 93% представлено сухопутными, а 7% водными видами животных. Живое вещество по массе составляет 0,01—0,02% от косного вещества биосферы, однако играет ведущую роль в биогеохимических процессах благодаря совершающемуся в живых организмах обмену веществ. Так как субстраты и энергию, используемые в обмене веществ, организмы черпают из окружающей среды, они преобразуют ее уже тем, что живут. Ежегодная продукция живого вещества в биосфере равняется 232,5 млрд. т сухого органического вещества. За это же время в масштабе планеты в процессе фотосинтеза синтезируется 46 млрд. т органического углерода. Биотический круговорот. Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих
планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами-потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов. Важная роль в глобальном круговороте веществ принадлежит циркуляции воды между океаном, атмосферой и верхними слоями литосферы. Вода испаряется и воздушными течениями переносится на многие километры. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делая их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в океаны и моря. Круговорот углерода начинается с фиксации атмосферной двуокиси углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углеводов используется самими растениями для получения энергии, а часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаться, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане. Круговорот азота также охватывает все области биосферы. Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль е этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращается в атмосферу. Благодаря биотическому круговороту биосфере присущи определенные геохимические функции: газовая — биогенная миграция газов в результате фотосинтеза и азотфиксации; концентрационная —аккумуляция живыми организмами химических элементов, рассеянных во внешней среде; окислительно-восстановительная — превращение веществ, содержащих атомы с переменной валентностью (например, железо, марганец); биохимическая — процессы, протекающие в живых организмах. Стабильность биосферы. Биосфера представляет собой сложную экологическую систему, работающую в стационарном режиме. Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте — продуценты (автотрофы), потребители (гетеротрофы) и деструкторы (минерализующие органические остатки) — взаимо-уравновешиваются. Гомеостатическое состояние биосферы не исключает способности ее к эволюции. (61) Эволюция б/с. На протяжении значительного времени существования нашей планеты основными факторами, влияющими на эволюцию биосферы, были геологические и климатические процессы. С ними связана эволюция живых организмов. Первые живые организмы — прокариоты — появились в архейскую эру. Ими были анаэробы, получавшие энергию путем брожения. В качестве пищи они использовали органические вещества абиогенного происхождения. Со временем в первородном океане стали иссякать органические вещества абиогенного происхождения. Появление аутотрофных организмов, особенно зеленых растений, обеспечило дальнейший непрерывный синтез органических веществ благодаря использованию солнечной энергии. Так создалась предпосылка к дальнейшему развитию и усложнению форм жизни. С возникновением фотосинтеза произошла дивергенция органического мира на два ствола, отличающихся способом питания. Благодаря появлению аутотрофных фотосинтезирующих растений вода и атмосфера стали обогащаться свободным кислородом. Этим была предопределена возможность появления аэробных организмов, способных к более эффективному использованию энергии в процессе жизнедеятельности. Среди этих организмов смогли появиться многоклеточные. Накопление кислорода в атмосфере привело к образованию в верхних ее слоях озонового экрана, не пропускающего губительных для жизни ультрафиолетовых лучей. Это подготовило возможность выхода первых живых организмов (вначале одноклеточных) на сушу, что осуществилось в кембрийском периоде. Появление фотосинтезирующих растений обеспечило возможность существования и прогрессивного развития гетеротрофных организмов. Жизнь заполнила различные среды обитания. Уже в середине палеозойской эры содержание кислорода в атмосфере стабилизировалось на уровне примерно 20 %. Биосфера приобрела динамическое равновесие в деятельности трех групп организмов, осуществляющих различные функции в круговороте веществ в природе — продуцентов (ауто-трофов), потребителей (гетеротрофов) и деструкторов, минерализующих органическое вещество. Благодаря этому установилось гомеостатическое состояние биосферы. С возникновением человеческого общества в истории биосферы появился новый мощный фактор, равный по своему воздействию грандиозным геологическим процессам. Этот фактор (человеческая деятельность) в известной мере нарушил биосферный гомеостаз.
(62) Человек и б/с. С появлением человека биосфера приобрела новое качество. Первоначально воздействие человека на окружающую среду не отличалось от влияния других организмов. Извлекаемые человеком из природы средства существования восстанавливались естественным путем, а продукты его жизнедеятельности поступали в общий круговорот веществ. Биосферный гомеостаз не нарушался. Со временем рост численности населения и все возрастающее использование природных ресурсов человеческим обществом вылились в мощный экологический фактор, нарушивший прежнее равновесие в биосфере. На современном этапе существования нашей планеты наибольшие преобразования в биосфере осуществляются именно человеком. Распахивая огромные территории, вырубая леса, создавая крупные населенные пункты и промышленные предприятия, добывая полезные ископаемые, сооружая каналы, водохранилища, изменяя русла рек, проводя лесонасаждения, человек значительно изменяет природу. Деятельность его сказывается на климате, рельефе местности, составе атмосферы, видовом и численном составе флоры и фауны. Использование атомной энергии, особенно испытания атомного оружия, повлекло за собой накопление радиоактивных веществ в атмосферном воздухе и Мировом океане. Извлекая из недр и сжигая уголь, нефть, газы, добывая руду и выплавляя чистые металлы, создавая сплавы и синтетические вещества, которых не существовало в природе, и новые химические элементы, рассеивая, наконец, продукты своей деятельности, человек значительно усиливает биогенную миграцию элементов. За время существования человечества общая масса живых организмов сокращается, за последние 300 лет биомасса планеты уменьшилась примерно на четверть. В. И. Вернадский пришел к заключению, что человечество образует в совокупности новую оболочку Земли — ноосферу (гр. по— разум), т. е. сферу разумной жизни. Естественные ресурсы делятся на невосполнимые и восполнимые. К первым относятся полезные ископаемые, запасы которых ограничены. Восполнимые богатства связаны с жизнедеятельностью организмов. Но при нерациональном использовании и они истощаются, что может повлечь непоправимые изменения в биосфере. В результате нерациональной деятельности человека только на протяжении нескольких последних столетий истреблено много видов животных и растений. Нередко гидротехнические сооружения лишают рыбу возможности добраться до нерестилища. Недостаточно очищенные промышленные отходы при спуске их в водоемы губят в них живые существа. Вырубка лесов без учета их воспроизведения приводит к обмелению рек.и эрозии почв. Уменьшение площади лесов, все увеличивающиеся площади возделываемых культур, испаряющих значительное количество воды, рост городов, дорог и других территорий с покрытиями, препятствующими проникновению воды в почву, приводят к обеднению почвы водой, что затрудняет вегетацию растений. Вместе с тем потребность в воде увеличивается. Перед человечеством встала проблема снабжения пресной водой. Возникает проблема и с количеством кислорода в атмосфере. Растительный покров -планеты уже не успевает пополнять атмосферу свободным кислородом. Поэтому если учесть, что ежегодно человечество увеличивает расход кислорода на 5 %, то через 165 лет
состав его в атмосфере достигнет критического для существования человека предела. Окружающая среда (атмосфера, поверхностные и подземные воды, почва) нередко загрязняются отходами промышленных предприятий. Существенным фактором воздействия на окружающую среду являются войны. В результате применения американской армией боевых химических веществ во Вьетнаме уничтожено до 25 % лесов на территории Южного Вьетнама, а накопление в окружающей среде мутагенов и тератогенов привело к учащению рождения детей с аномалиями. В настоящее время перед человечеством возникает вопрос о возможности экологического кризиса, т. е. такого состояния окружающей среды, когда из-за происшедших в ней изменений она может стать непригодной для жизни. Деятельность человека приводит как к положительным, так и к отрицательным изменениям в биосфере. К числу положительных следует отнести создание новых высокопродуктивных сортов культурных растений, пород животных, штаммов микроорганизмов, искусственное разведение рыбы в морях и Мировом океане, создание культурных биогеоценозов и т. д. К отрицательным последствиям приводят: нерегулируемые лесоразработки, массовый сбор дикорастущих растений, охотничий и рыбный промыслы; загрязнение вод, атмосферы/и почвы промышленными, сельскохозяйственными и бытовыми отходами, нерациональная обработка земли, приводящая к эрозии, и т. д. Естественно, что отрицательные воздействия на биосферу необходимо ограничивать. Быстрый рост населения и интенсивное развитие промышленности влекут за собой все возрастающее использование ресурсов живой природы. При этом нередко нерациональное потребление природных богатств приводит к нарушению биологического равновесия в некоторых сообществах и даже к их истощению и гибели. В связи с этим необходимо выяснить мировые ресурсы биосферы для разработки наиболее рациональных методов их использования. С этой целью в 1964 г. была создана специальная организация — Международная биологическая программа (МБП) сроком на 8 лет. Ее задача заключалась в том, чтобы определить биологическую продуктивность естественных и созданных человеком наземных и водных растительных и животных сообществ. Изучение природных биологических ресурсов планеты показало, что недостаточное питание значительной части человечества в настоящее время не результат бедности природных ресурсов, а результат капиталистического способа производства и распределения продуктов. Подсчеты показывают, что современный уровень технологии сельскохозяйственного производства может обеспечить полноценным питанием население, численность которого в несколько раз больше современного.. Кроме того, благодаря развитию на-уки (агротехника, селекция) уже в ближайшие годы резко повысится урожайность сельскохозяйственных культур. Перспективен переход от промысла рыбы и других обитателей океана к искусственному выращиванию морских организмов. Это будет важным вкладом в решение мировой продовольственной проблемы. (63) Основные понятия экологии. Живые существа, населяющие территории с разнообразными условиями обитания, испытывают на себе влияние последних и сами оказывают действие на окружающую среду. Закономерности взаимоотношений организмов и среды их обитания, законы развития и существования биогеоценозов, представляющих собой комплексы взаимодействующих живых и неживых компонентов в определенных участках биосферы, изучаются специальной биологической наукой экологией. Экологические закономерности проявляются на уровне особи, популяции особей, биоценоза (сообщества), биогеоценоза. Биоценозом (сообществом организмов) называется пространственно ограниченная ассоциация взаимодействующих растений и животных, в которой доминируют определенные виды или физический фактор. Предметом экологии, таким образом, являются физиология и поведение отдельных организмов в естественных условиях обитания (аутоэкология), рождаемость, смертность, миграции, внутривидовые отношения (динамика популяций), межвидовые отношения, потоки энергии и круговороты веществ (син-экология). К основным методам экологии относятся полевые наблюдения, эксперименты в природных условиях, моделирование процессов и ситуаций, встречающихся в популяциях и биоценозах, с помощью вычислительной техники. Среда — это вся совокупность элементов, которые действуют на особь в месте ее обитания. Элемент среды, способный оказывать прямое влияние на живой организм хотя бы на одной из стадий индивидуального развития, называется экологическим фактором. В соответствии с распространенной и удобной классификацией экологические факторы делят на биотическиеи абиотические, хотя указанное деление до некоторой степени условно. Абиотический фактор температура может, например, регулироваться изменением состояния популяции организмов. Так, при снижении температуры воздуха ниже 13°С интенсифицируется двигательная активность пчел, что повышает температуру в улье до 25—30°С. Учитывая социальную сущность человека, проявляющуюся в его активном отношении к природе, целесообразно выделение также антропогенных экологических факторов. По мере роста народонаселения и технической вооруженности человечества удельный вес антропогенных экологических факторов неуклонно возрастает. Согласно другой классификации различают первичные и вторичные периодические и непериодические экологические факторы. С действием первичных факторов жизнь столкнулась на ранних стадиях эволюции. К ним относятся температура, изменение положения Земли по отношению к Солнцу. Благодаря им в эволюции возникла суточная, сезонная, годичная периодичность многих биологических процессов. Вторичные периодические факторы являются производными первичных факторов. Например, уровень влажности зависит от температуры, поэтому в холодных областях планеты атмосфера содержит меньше водяных паров. Непериодические факторы действуют на организм или популяцию эпизодически, внезапно. К ним относят стихийные силы природы — извержение вулкана, ураган, удар молнии, наводнение, а также хищник, настигающий жертву, и охотник, поражающий цель.
Благодаря многообразию экологических факторов наблюдается закономерное расселение видов по планете. Колебания интенсивности их действия проявляются в исчезновении некоторых видов с определенных территорий, изменении плотности популяций, показателей рождаемости, смер
|
||||
Последнее изменение этой страницы: 2016-08-25; просмотров: 4217; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.8.177 (0.023 с.) |