О пользе и вреде лошадиной грамоты 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

О пользе и вреде лошадиной грамоты



И. М. Кондраков

Школа Новых Знаний

 

2021

Содержание

0. Вступление: О пользе и вреде лошадиной грамоты.

Основные понятия.

2. Системы и законы их развития, как основа познания.

2.1. Минимальная модель системы.

2.2. Научные системы.

2.3.     К развитию научных систем.

2.4. Технические Системы.:

3.     О гармонии.

4. Этапы и модель развития систем.

5.     Алгоритм анализа развития систем с помощью законов диалектики.:

6.     От двоичной логики к логике непрерывной.

7. Законы развития систем (законы диалектики).

8.    Системный анализ или Системное мышление (схема многоэкранного

    мышления).

8.1. Системный оператор..

 

Делимся опытом…

Открой наш мир Сам!

(Методология познания для слушателей Школы Новых ЗнанийЮношеской Школы Творчества)

Вступление

Конструктивная Теория Всего Макова Б. В.

Пока закрытая для большинства теория, экспериментальная проверка которой возможна в ближайшее время.

3. Основы формирования человечества А. М. Хатыбова и ряда учеёных.

  Красивая и многообещающая теория, доказательства состоятельности которой, как научной, пока получаются опосредствованно.

К теориям подобного рода можно отнести и Концепцию Общественной Безопасности (КОБ) о толпо-элитарном обществе. В ней пирамида власти состоит из нескольких социальных слоёв: Высшее знахарство (Глобальный Предиктор), Элита и Толпа.

При этом каждый нижележащий слой стремится попасть в верхние слои пирамиды. В итоге при получении целостных знаний (перевёрнутая пирамида) пирамида власти должна разрушиться, как полагают её создатели...

В ОФЧ представлена своя пирамида в виде четырехслойного социума будущего: концепт, мудра, ассигмент, старики и дети. Это структура похожа на структуру старой пирамиды власти. Отличие состоит в том, что при равенстве в обществе всех членов у нижележащих слоев всегда есть стремление двигаться вверх – на вершину пирамиды, но есть ограничения - ограничения всего лишь по октаве мозга претендента... Опять минимальное меньшинство через слои мудра и ассигментов будет управлять большинством…?

 

    Каждая из этих теорий решает одну или несколько задач и также далеки от Истины, к открытию которой стремится Познание Человечества. И это нормально и естественно, но важно, чтобы они не превращались со временем с «лошадиную грамоту», выполнив свои функции, уступали место действительно Новым знаниям. А для этого самым активным образом необходимо создание и развитие теории Познания, основанной на законах развития систем, а не на теории вероятности и других «продвинутых» инструментов  математики... Формулы не нужны, чтобы понять суть любого физического явления…

О сновные понятия

    Прежде чем предложить методологию познания, полученную и апробированную на основе собственной практики и понимания поставленной перед собой задачи, рассмотрим ряд терминов, с которыми придется работать не только отдельным исследователям, но и в системе образования, чтобы готовить новых творцов для грядущей России.

    Попытки реформировать образование, в целом, завели его в тупик, ибо сам процесс управляется далекими от проблем образования «специалистами». Но само образование, как систему, нужно менять –это безусловно. С усложнением мира, поступающей из него информации в виде Новых и иных Знаний и обрушивающаяся на новое поколение ответственность за грядущее, требуют изменений и в методологии преподавания Новых знаний и методологию их получения. В любом случае нужен переход от фактологического образования – к методологическому, а в Познании – к изучению методологии Познания науки, чтобы каждый, прикасающийся к Новым знаниям, Сам смог добыть часть этих знаний, опираясь лишь на знание законов развития систем, а не на волю случая и авторитеты.

Методоло́гия нау́ки, в традиционном понимании,  — – это учение о методах и процедурах научной деятельности, а также раздел общей теории познания (гносеологии), в особенности теории научного познания (эпистемологии) и философии науки. Методология, с д р угой стороны – (греч. Путь, исследование) – система законов развития систем, принципов и способов организации и построения теоретической и практической де ятельности, а так же учение об этой системе (рис. 1).

ТЕОРИЯ – в широком смысле слова - – комплекс взглядов, представлений, идей, направленных на истолкование и объяснение какого-либо явления... В основе любой теории лежит модель того явления или предмета (системы), которые ею исследуются. Модель объекта научной системы отличается от объекта, например, технической системы тем, что модель технической системы мы воплощаем в итоге в «металл», чтобы проверить её работоспособность, а модель научной системы воплощать не нужно – она уже существует в природе, поэтому нужно только проверить её соответствие природной системе.

В основе любой теории лежит концепция - концепция (от лат. conceptio — – понимание, система), определённый способ понимания, трактовки какого-либо предмета, явления, процесса, основная точка зрения на предмет и др., руководящая идея для их систематического освещения.

 Само понятие ТЕОРИЯ – в широком смысле слова - комплекс взглядов, представлений, идей, направленных на истолкование и объяснение какого-либо явления... В основе любой теории лежит модель того явления или предмета (системы), которые ею исследуются. Модель объекта научной системы отличается от объекта, например, технической системы тем, что модель технической системы мы воплощаем в итоге в «металл», чтобы проверить её работоспособность, а модель научной системы воплощать не нужно – она уже существует в природе, поэтому нужно только проверить её соответствие природной системе.

От теории познания, исследующей процесс познавательной деятельности в целом, методология отличается тем, что она акцентирует внимание на методах познания и является способом достижения этого знания и направляющим началом в исследовательской деятельности.

При разработке теории всегда выбирается конкретная паради́гма (от греч. παράδειγμα, «пример, модель, образец»): Научная парадигма — – принятая научным сообществом модель рациональной научной деятельности. Например, неоднородность Вселенной в концепции Н.В. Левашова выступала в качестве парадигмы.

Нужно помнить всегда, что любая теория не является закой-то законченной догмой, которой нужно следовать как инструкции на все времена. Например, после создания ОТО А. Эйнштейном было создано 64 теории тяготения, но ни одна из них не соответствовала тому, что известно было на это время из практики. Они не прошли испытание временем.

Кроме того, на каждую теорию нужно смотреть как на систему, которая, как правило, охватывает определенный круг вопросов и ряд задач, и, как система, ещё развивается и может быть в каких-то вопросах подкорректирована. «Единственно» правильных теорий быть не может, т.к. объять необъяьное, причем цельно, на современном уровне развития науки не реально.

И в этом вопросе никакая математика не сможет помочь решить конкретную задачу, опираясмь лишь на свой аппарат, без исходной парадгмы и концепции. Математика, при всей её универсальости, – это «нож» с «вилкой», позволяющие препарировать блюдо за «обеденным столом» и не более. Повлиять на качество блюда, его вкус и т.п. она не может. Как говорил Николай Виктрович, математика не нужна, чтобы понять суть явления, понимание его – вот что нужно!

По словам М. Планка: Отказываясь от разработки предметных моделей и называя математические модели физическими теориями, "...физики погрузились в туманную атмосферу матриц и волновой механики, в математические операции. Они делали правильные выводы, но вместе с тем не понимали стоящей за ними физической реальности".

Что есть физика? – задаёт вопрос А.М. Хатыбов, и сам на него отвечает:

Называть физику наукой о природе нет достаточных оснований.

В методологии царит неразбериха. Метафизический метод, допускающий при решении задач подмену реальных явлений воображаемыми, перенесён из прикладной физики в фундаментальную, и философы называют его "новой диалектикой, созданной самими физиками", а сами физики (см. А. Б. Мигдал "Квантовая физика") разделяют на диалектику Эйнштейна, диалектику Бора и т.д.

Отличие этих "диалектик" состоит лишь в том, что Эйнштейн измышлял только математические модели (по его признанию, он каждые две минуты придумывал новую модель и потом её же сам и отвергал) воображаемых явлений природы, а Бор - математические и предметные.

  Отсутствие методологии научного исследования похоже на блуждание в темноте, где есть определенная вероятность того, что можно случайно наткнуться на какой-нибудь предмет, который потенциально может стать объектом открытия, если «искатель» готов к его восприятию [1].

Судя по методологии и содержанию теорий, физика развивалась как искусство решения прикладных задач, то есть как прикладная математика (математическая физика), и, называя её наукой о природе, физики выдают желаемое за действительное. Вследствие этого и в теориях царит неразбериха. Вместо искаженного мировоззрения даётся частичная инструментальная база (математика).

 Всё развитие науки на всех её этапах - это развитие математики и моделирование без практического смысла. Наука так увлеклась моделями, что пропустила "золотое сечение", без которого нельзя подойти к элементарной атомной структуре и т.д. Но здесь напрашивается вопрос, «случайно ли пропустила…?» В то время, как наши предки в своей практике пользовались матрицей Русского Всемера, построенной на законах гармонии, «просвещённая Европа» активно внедряла математические методы решения физических задач [2]. Скорее именно здесь проявляется «гнусная» сущность эбровской системы, каждый раз уводящая Человечество с истинного пути развития посредством Ньютонов, Эйнштейнов и иже с ними.

Представляется, что в будущей науке между физическими параметрами должны быть только численные соотношения, при этом они должны быть безразмерными и связаны с законами гармонии, т.е. «золотым сечением», законом качественной симметрии и законом нарушенной симметрии (рис. 1), помимо четырёх гармоний, известных из Конструктивной Теории Всего (КТВ) [3].

Проще говоря, пока математика в роли инструментария, это всего лишь «нож с вилкой», позволяющие препарировать любую «научную пищу», в которой есть некие численные соотношения. Но при всём при этом она не обязана давать представление о вкусе, и т.п. качествах этой «пищи». Это не её задача и назначение, хотя из неё сделали царицу наук, сведя сам процесс познания в сферу абстрактной логики, (далекой от естественной логики, выработанной за всю историю Человечества).

     Методологический подход к школьному образованию позволит научить учащихся видеть междисциплинарные связи между всеми дисциплинами, которые они изучают, и позволит им понять, для чего они изучают те или иные предметы, ибо окружающий нас мир един, но на него можно смотреть с разных ракурсов, что и приводит к созданию множества теорий при двоичной логике, тогда как его нужно видеть цельно.

Как отмечено в статьях А.И. Юрьева, «старый школьный двор» выдал нам несколько своих тайн, но проблемы остались и их нужно решать уже с учетом реалий сегодняшнего дня, т.к. часть проблем школы переходят в проблемы вузов, а поэтому нужно устранить причину, благодаря которой мы потеряли лидирующие места в мире, в частности в плане образования. А для этого есть все: Новые знания и упреждающие технологии развития нашей цивилизации по Разуменному пути.

Для самого процесса познания нужна соответствующая технология добывания Новых знаний, которая и будет определять и саму логику познания. Существующая технология добывания Новых знаний и развития систем посредством возможнойстей человека основана на древнем методе проб и ошибок (МПиО) или методе научного тыка, ведущие к логическому фундаменту, постронному на двоичной логике, от которой нужно уходить. Практически это гадание на «кофейной гуще»и, и, по большому счету, называться наукой не может. Мы будем исходить из того, что наш мир системен, его системы развиваются по законам, которые можно познать и использовать для его реального Познания и его совершенствования, без надежд на случайности, озарения и осенения, т.е. будет стремиться к построению логического фундамента, построенного по законам непрерывной логики, общепринятой в содружестве разумных цивилизаций. Чтобы уйти от двоичной логики, решающий задачу, должен держать в голове какое-то представление о векторе цели, в направлении которого он должен будет следовать (рис.2.). Но, чтобы не делать лишних шагов в направлении ВЦ, решающий должен всегда видеть идеальный конечный результат (ИКР) (т.е. быть в пределах коридора решений), к которому он адолжен будет в итоге прийти, т.е. решение начинается как бы с конца, а далее выявляются причины, мешающие достижению ИКР. На данном пути возникают противоречия, кторые включают в себя следствия, вытекащие из исходной гипотезы, теории или реального факта, полученно при наблюдении за исследуемым объектом, явлением, эффектом и т.п. Формулирование противоречия и его разрешение приводит в итоге крешению задачи.

В своем анализе мы будем пользоваться также схемой многоэкранного мышления и известными нам законами развития систем.

 

Выводы:

Таким образом, в условиях современного информационного состояния общества каждый его член, чтобы не оказаться вне его, должен:    

1. Знать и уметь пользоваться мето­дами и методологией творческого мышления для решения нестандартных задач, которым необходимо учить уже со школьной скамьи.                   

2. Иметь все знания об окружающем мире в доступной для понимания и пользования форме.

3.   Поддерживать и развивать фантазию и системное мышление в течение всей жизни.

4. Учиться всю жизнь, т.е. уметь самостоятельно непрерывно пополнять свои знания и практические навыки.

Для подготовки инженеров будущего необходим переход от традиционной фактологической педагогики к педагогике методологической, а для этого нужна подготовка преподавателей новой формации.

Преподаватель, исследователь, пропагандист Новых Знаний не участвующий в научной работе, изобретательств е, сам не владеющий методологией научного и технического творчества не может научить студентов, школьников или почитателей творческим методам решения актуальных задач из любой области. Он должен вначале сам освоить эти методы, а затем учить студентов. Для этого необходимо ввести в программу вузов и школ предмет «основы научного и технического творчества» и учить студентов и школьников конкретным методам решения творческих задач.

 

Минимальная модель системы

    Система, состоящая из взаимодействующих условного поля (П) и д

вух веществ (В1 и В2), называется ВЕПОЛЕМ [4] и является минимальной моделью технической или природной систем. А система представлений о том или ином явлении будет называть научной системой. При этом одно вещество в веполе выполняет функцию активного элемента (в технической системе – инструмента, прибора и т.п., а в природной – системообразующего элемента - ядро в атоме), а второй – пассивного элемента (изделия) или условно фокального (находящегося в фокусе нашего внимания) объекта. Сама система

состоит из двух звеньев (П à В), каждое из которых даёт результат R в виде поля, вещества или информации. Примеры научной (НС) и технической (ТС) систем:

Здесь: П à В1 = R  (результат, явление,  действие, эффект и т.п.) и R à В2 = ФЦ. à направление стрелки показывает направление действия (двусторонняя – взаимодействия);

- вредная связь или взаимодействие;

- - -à - отсутствующая связь;

----- - безразличная связь.

Научные системы

В научной системе мы описываем фактически природную систему:

Пример 1. При падении на металлическую пластинку пучка света, кванты света выбивают из неё электроны. НС: металлическая пластинка содержит свободные электроны, состоящие из магнитных частиц и фотонов, при столкновении фотона с электроном, электрон, преодолевая работу выхода электрона (энергию удержания электрона), выбивает его, и он вылетает из металла с определенной скоростью, как мячик от стенки, обладая кинетической энергией. На схеме, изображенной ниже, представлены схема природной системы (а) и её минимальной модели научной системы (б), в которую входят представления о потоке фотонов (hv) в виде частиц электрической материи, наличия свободных электронов (е) в металлической пластинке (В) и потока вылетающих из пластинки электронов, обладающих кинетической энергией (Т).

 В данном примере модель природной систем совпадает с моделью научной системы. При введении в систему вместо (*) объекта, на который может воздействовать поток Ве, можно получить минимальную модель технической системы. Следует обратить внимание на то, что в основе минимальной модели природной и технической системы лежит физическая структура.

При этом часто модель научной системы совпадает с физической структурой природной системы:

Пример 2: При встрече потока электронов (П е) с преградой (В), он разбивается на потоки фотонов (П ф) и магнитных частиц (П µ) (рис. К-М-1) …

 

 

Полученная физическая структура может быть использована для создания ряда технических систем, нужно лишь подобрать вместоподобрать вместо (*) нужный элемент с соответствующими свойствами.

Пример 3: в атоме Лучина А.А. ядро (из магнитных частиц µ) связаны с электронами с избытком фотонов ф (электрических частиц), образуя систему С – атом (рис. Л-2) [5]. При этом электроны не вращаются, но могут совершать тепловые колебания в радиальном и тангенциальном направлениях

 

В данном случае модель научной системы совпала с моделью природной системы.

К развитию научных систем

 

Б.М. Кедров видит причину научных революций в возникновении и преодолении противоречий, возникающих в период кризисов, причём это происходит диалектически по схеме: от единичного Е (например, натрий и калий – химические элементы) к особенному О (натрий и калий входят в группу щелочных элементов), а затем к всеобщему В (объединение групп элементов по атомному весу и включение их во всеобщую периодическую систему элементов) через преодоление познавательно-психологического барьера (β - ППБ) [1], где роль подсказки выполняет интуиция [6]. Он же видит развитие науки через призму диалектических законов: перехода количественных изменений в качественные, отрицание отрицанием и борьбой и единством противоположностей, т.е. когда назревает диалектическое противоречие (ДП) [2]. Его в теории решения изобретательских и научных задач еще называют физическим противоречием (ФП) или физической несовместимостью представлений (ФН), которые можно сформулировать так:

Чтобы с позиций существующей парадигмы По объяснить факт Ф1, исследуемый объект О должен обладать свойством С, но, чтобы объяснить аномальный факт Ф2, объект О должен обладать свойством не-С.

 

 

 

Анализируя развитие химии, В.А. Кузнецов, выделил четыре этапа в развитии представлений об изучаемом объекте в химии: изучение состава вещества, как определяющего его свойства, затем его структуры, проявляющей разные свойства при одном и том же составе; поведения, т.е. динамики у молекул вещества, и, наконец, саморазвития, эволюции молекул [7]. Добавим к этому и проявление свойств веществ в зависимости от положения его составляющих в пространстве Аналогичные этапы проходят в своем развитии и технические системы.

Анализ развития научных систем показывает, что они развиваются через возникновение и разрешения научных противоречий в научных системах, в недрах которого возникает физическое противоречие (ФП) или физическая несовместимость (ФН) [1]. В целом эти виды противоречия относятся к диалектическому противоречию.

Чтобы с позиций существующей парадигмы Пс объяснить факт Ф1, исследуемый объект О должен обладать свойством С, но, чтобы объяснить аномальный факт Ф2, объект О должен обладать свойством не-С.

 

                                     

 

 

После синтеза моно-системы начинается этап внедрения и интенсивного ее развития: подъем и разворачивание системы (поиск новых полезных функций (ПФ) и подсистем (ПС)) по линиям: моно-С à би-С à поли-С à сложные системы à С целью повышения эффективности системы, её КПД. Система в итоге настолько усложняется, что начинают происходить сбои в системе (теории, гипотезе и т.д.) начинается процесс «поглощения» систем более низкого ранга системами более высокого ранга. Накопление количественных изменений приводит к качественным изменениям системы:

В основе НП лежит физическое противоречие или физическая несовместимость (ФП или ФН): к одному и тому же объекту НП или его части предъявляются взаимопротивоположные физические требования. Здесь ФП в научных системах ничем не отличается от ФП в технических системах, т.к. они имеют дело с одними и теми же объектами материального мира. Уже из самого факта совпадения ФП следует, что основная часть арсенала средств ТРИЗ может быть перенесена в научное творчество.

ФП доводит противоположные представления до крайности, указывая на причину их несоответствия, т.е. конкретные физические состояния (свойства) объекта, лежащие в основе представлений о нем.

Научное познание отличается от обыденного своей системностью и последовательностью как в процессе поиска новых знаний, так и упорядоченностью всего найденного ранее.

    Нужно понимать, что наука, как система, не стоит на месте, и она подчиняется определенным закономерностям, которые можно познать и использовать для сознательного решения задач, считающихся творческими.

    Как было отмечено выше, в своем развитии наука проходит четыре этапа: поиск состава, поиск структуры, динамику и эволюцию изучаемого явления. Пример: АТОМЫ- МОЛЕКУЛЫ-ГЕМОГЛОБИН…- ДНК…

О гармонии

 

Наш мир гармоничен и это свойство самой развивающейся материи, устранять возникающие на её пути противоречия. Известны следующие виды гармонии: гармония формы, гармония покоя, гармония целесообразности и гармония минимально неделимого действия. Приведенные типы гармоний ранее представленные парными понятиями, т.е. в виде противоположностей, как отмечено выше, – «согласия» разногласных, т.к. всё сущее состоит из противоположностей, неразрывно связанных друг с другом, взаимоисключающих друг друга, а их противоречивое взаимодействие даёт импульс к развитию: Притяжение – отталкивание (пр.→о) - порождает гармонию минимально неделимых действий (Г1); Покой – движение (п→д)– порождает гармонию покоя (Г2,) как состояний объекта при его движении, т.е. как минимально неделимого движения; Форма – содержание (ф→с) - порождает гармонию формы (Г3), как наполнение её минимально неделимым содержанием объектов любой мерной масштабности, и, наконец, Целесообразность – иррациональность ( ц→и ) – порождает гармонию целесообразности (Г4), как состояние минимально неделимой иррациональности при развитии объекта. Без взаимодействия противоположностей… покой-движение… не будет полной гармонии, только во взаимодействующих противоположностях она возможна (как в саморегулируемых, смонастраивающихся, самоуправляемых и т.п. системах)…

Взаимодействие и взаимосвязь гармоний условно можно представить в виде тетраэдра (рис.Грис. Г-2а.) или звездчатого тетраэдра (рис. Г-2б.), в вершинах которого находятся приведенные парные понятия, отражающие конструктивно суть гармонии, как проявление глубинной сути функционирования системы (рис. Г-2) [8.].

      Целесообразность движения дает (есть) покой. Целесообразность содержания дает (есть) целесообразную форму.

Иррациональность покоя дает (есть) движение. Иррациональность формы дает (есть) иррациональное содержание.

Гармонии каждого типа не существуют сами по себе. При нарушении гармонии конкретного типа в какой-либо части системы, приводит к нарушению гармонии и во всех других частях и типах гармонии, поэтому система, как самонастраивающаяся, быстро вновь приводит себя в гармоничное состояние (см. табл. 1).

      Вот почему в целом система тетраэдра гармоний является самой устойчивой системой, самоорганизующейся и самовосстанавливающейся.

 

3.

4. э Э волюци ю я или саморазвитие. Чем выше уровень развития системы, тем она становится более управляемой и, в итоге, переходит на уровень самоуправления, самоорганизации. Самым продолжительным этапом, особенно для техники, является этап динамизации, когда систему адаптируют к условиям, в которых она должна функционировать.

Сама волновая модель Земли может быть представлена в виде концентрически расположенных и вложенных в друг друга слоёв (систем), каждый из которых в целом работает на основную ФЦ  надсистемы.:

Земля – биосфера – техносфера – атмосфера – высокоорганизованная плазма – первичные материи (рис. В- 3). При этом развитие любого элемента (системы) из приведенной цепочки можно представить также волной:  поле (плазма) П – вещество В - подсистема ПС – система С – надсистема НС                (продольный разрез волны - рис. В- 4.)

При этом система любого уровня стремится к достижению максимального эффекта на пути реализации идеального конечного результата (ИКР), заложенного в системе.

 

 

Рассмотрим наглядный пример. Как узнать, когда образуется куча?

 

 

Возьмем несколько песчинок и насыпим в одном месте. Кучи нет. Насыпим горсть песка – образуется небольшая кучка. Отличается ли она от рассыпанных частиц? – Да, отличается. Насыпим большую кучу, и обнаружим, что маленькая и большая кучи имеют одинаковый угол при своей вершине – угол естественного откоса. Получается, что куча образуется тогда, когда образуется новое качество. Например, если насыпать кучу песка так, чтобы образовался конус с углом естественного откоса и далее на этот конус попробуем опереть фундамент с выемкой для конуса, он будет самым прочным, т.к. песок не сжимается, а куча уже приобрела самую рациональную форму. Произошел переход количества песчинок в качество – в не сжимаемость конической кучи, т.е. качество не сжимаемости песчинки перешло к куче песка.

А теперь вернемся к Первичным Материям (см. рис. К-12). На рисунке можно видеть, что происходит при синтезе ФПМ из ПМ. При попытке синтезировать ФПМ из ПМ с одинаковым коэффициентом квантования, ничего не получится, т.к. не выполняется условие – наличие перепада мерности между ними на величину Δλ = 0,020203236, т.е. получаем пустое множество из одинаковых ПМ. Это на микроуровне, а на макроуровне возможно объединение одинаковых систем с обретением нового качества.

При объединении двух разных ПМ, отличающихся друг от друга на квант мерности (Δ L = 0,20203236), синтезируется физически плотное вещество АВ, т.е. би-система, далее при синтезе 3-х ПМ образуется вещество АВС и т.д. Наконец при синтезе 7 ПМ образуется наше физически плотное вещество АВС DEFG, которое мы видим и ощущаем органами чувств так, что каждый раз при синтезе определенного количества ПМ образуется новое вещество, т.е. новое качество.

 

Формирование любой системы начинается с поиска её состава:

1. Для технической системы это – Двигатель (Д) или источник энергии (ИЭ), Трансмиссия (Тр), Орган Управления (ОУ) и Рабочий Орган (РО), см. развернутая модель рис. 6.6.;

2.  Для художественной системы -  РО - герой, или объект в фокусе – фокальный объект, среда, действие. Источник Вдохновения (ИВ) (тема, сюжет и т.д.) овладевает Писателем, поэтом (П), который по Замыслу (Писателя - ЗП), « обрабатывает» посредством языка (Я) через Героя (Г) Читателя (Ч), см. развернутую модель художественной системы рис. 6.7.;

3.   Для научной системыНС – системы представлений - об объекте исследования и изучения (фокальный объект (ФО), явление, среда проявление эффекта), Источник Вдохновения (ИВ) овладевает, Объектом Вдохновения (ОВ) – Учёным (У), который посредством инструментов воздействует на природную систему (ПрС) и полученные результаты сравнивает с НС (теорией, гипотезой и.д.) на соответствие ПрС - НС.

Развитие системы представляет собой взаимодействие нескольких тенденций: разворачивание системы с объединением исходных составляющих (на базе их физических свойств и качеств) в более сложные системы, с целью повышения её эффективности при достижении поставленной цели, и сворачивание её до идеальной системы в инерционном представлении  или  системы представлений об объекте познания в неинерционном состоянии (научные системы)  вплоть до рождения новой системы, продолжающей своё развитие по прежнему алгоритму (рис. В- 4.1).

Разворачивание системы осуществляется с целью поиска новых полезных (потребитель-ских) функций будущей идеальной и гармоничной системы, сопровождается её усложнением с одновременной идеализацией (упрощением) в оперативной зоне (там, где возникает конфликт, противоречие) путем передачи функций ряда подсистем «идеальному веществу», которое обладает только заданными свойствами. При этом, разворачиваясь, система как бы «утяжеляется», стремясь перейти на верхние этажи системы (в иерархии систем) – в НадСистему, но вектор её развития все время устремлен к центру волны – к области вещества (В), в котором рационально соборно объединены требуемые физические качества и свойства, и, в которое она в итоге сворачивается и поддается эффективному программированию (см. рис. В-5.). Если речь вести о научных системах, идет усложнение системы представлений, уточнение парадигмы и создание более гармоничной теории.

После формирования моно-системы (окончания этапа поиска состава), происходит интенсивное еёе развитие, как на уровне системы (путем дальнейшего повышения её главной полезной функции (ГПФ)), так и на уровне надсистемы (путем применения её в качестве подсистемы, системы более высокого ранга), в которую она включается, адаптируя её к идеальной работе на благо цели надсистемы. Далее, с целью увеличения КПД и эффекивности системы, увеличивается степень её соборности за счет объединения с себе подобными, альтернативными или иными системами с функциями целей, направленных на повышение эффективности уже соборной системы по линиям развития моно-С би-С – поли-С – сложные С. Но в процессе насыщения исходной системы различными буферными системами происхят сбои в работе и система начинает «освобождаться» от «лишних» систем путем их сворачивания в более компактные системы, с сохранением  обетенных ими полезных функций..

Процесс Сворачивания системы сопровождается передачей всех функций системы или её подсистем системам более низкого ранга, а в итоге - «идеальному» (не имеющих лишних качеств и свойств) веществу или системам, обладающим свойствами, аналогичными функциям цели (ФЦ) сворачиваемых подсистем или систем (см. рис. В-4.1)). Заканчивается процесс сворачивания системы синтезом новой моно’-системы с иным физическим принципом функционирования и началом нового этапа развития системы путем разворачивания её в новых условиях. В целом процесс развития системы в течение одного цикла включает, как отмечено выше, следующие крупные этапы: поиск состава и структуры системы с положением её в пространстве à адаптация системы к окружающей среде (через механизмы динамизации) à переход к самонастраивающимся и самоуправляемым системам (через введение обратной связи).

Развитие систем представлено в виде объемной волновой модели (рис. В-3), продольный разрез которой представлен на рис. В-4. и рис. В-4.1.

    Как видно из схемы процессы развертывания системы до уровня надсистемы и поглощения системы «идеальным» веществом (В1, В2, В3, В n) идут параллельно.

Этап поиска состава и структуры, а также динамизация будущей системы заканчивается синтезом моно’-системы (моно-С1), в которой присутствует минимально необходимое количество составляющих систему компонентов.

После синтеза моно-системы начинается её жизнь в новой среде, для которой она и создана, этап её внедрения (для искусственных систем) и интенсивного развития: подъем и разворачивание системы (поиск новых полезных функций (ПФ) и подсистем (ПС)) по линиям:

5.   моно-С би-С поли-С сложные системы



Поделиться:


Последнее изменение этой страницы: 2021-08-16; просмотров: 69; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.84.175 (0.105 с.)