Расчет нестационарных температурных полей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет нестационарных температурных полей



Температура – это термодинамический потенциал. Энергия (теплота) передается от тех мест, где температура выше в те, где она ниже. Температура характеризует среднюю скорость движения частиц. Их связь наиболее простая для идеального газа , где  – средняя скорость движения молекул. При абсолютном нуле температуры () движение молекул прекращается.

Внутренняя тепловая энергия имеет ряд особенностей по сравнению с другими видами энергии (механической, электрической, магнитной), но в принципе от них не отличается и измеряется в джоулях. Это часть внутренней энергии, связанная с движением частиц (молекул). Кроме тепловой, во внутреннюю энергию входят энергия химического взаимодействия атомов в молекуле, энергия взаимодействия частиц в атоме и т. д., следовательно, и при  внутренняя энергия больше нуля.

Обычно интерес представляет не общее количество энергии в веществе, а только его изменение при изменении температуры и при фазовых превращениях. Поэтому за нулевой можно принять любой уровень, например внутреннюю энергию перлита при . Тогда энергия при нагреве перлита будет увеличиваться, а при остывании - уменьшаться.

 При превращении перлита в аустенит энергия поглощается, поэтому такая же масса аустенита при той же температуре обладает большей энергией, чем перлит. Энергия расплавленного металла при той же температуре выше, чем у твердого (с учетом скрытой теплоты плавления).

Взаимодействие между отдельными частями решаемой нами задачи о моделировании сварочных процессов во многом связано с превращениями энергии. Основная роль электрического тока состоит в нагреве деталей с переходом электрической энергии в тепловую:

.                                           (12.14)

При фазовых превращениях происходят обратимые процессы перехода тепловой энергии в химическую и энергию кристаллической решетки. При пластической деформации происходит переход механической энергии в тепловую (разогрев)

;                                  (12.15)

каждый компонент напряжения совершает работу на соответствующем компоненте пластической деформации.

Работой называется процесс изменения энергии (переход энергии из одной формы в другую и от одних тел к другим). Поэтому изменение энергии равно величине совершенной работы. Мощностью называется скорость совершения работы, т.е. работа за единицу времени.

Мощность теплового потока  – количество теплоты, проходящей через границу (поверхность) за единицу времени. Удельная мощность  – тепловой поток через единицу площади границы в данной ее точке.

Уравнение Фурье

Уравнение Фурье

,                                         (12.16)

является аналогом закона Ома (12.1): вместо плотности электрического тока  в нем присутствует удельная мощность теплового потока , вместо электропроводности  - коэффициент теплопроводности , а вместо напряженности (градиента) электрического поля  – градиент температур на границе  ( – вектор нормали к границе).

Теплота распространяется от горячих частей тела к холодным (в сторону убывания температуры), поэтому в уравнении присутствует знак минус. Поток тепла пропорционален градиенту температур, т. е. разности температур на единицу длины в направлении потока теплоты, и зависит от свойств материала (теплопроводности). Размерность теплопроводности – Вт/(м·К).

Если имеется ячейка (элементарный объем) и найдены потоки теплоты через все ее границы, то общее количество теплоты, поступившего в объем за время

,                                   (12.17)

где   – удельная мощность потока теплоты через границу .

Чтобы определить температуру, нужно найти изменение количества теплоты (энергии)  в единице массы , которое называется теплосодержанием или энтальпией

.                                               (12.18)

Изменение температуры при изменении теплосодержания зависит от теплоемкости вещества. Удельная теплоемкость – это количество теплоты, необходимое для повышения температуры единицы массы вещества на , размерностью Дж/(кг·К).

;                                                (12.19)

;

.                                      (12.20)

Уравнение теплопроводности (уравнение Пуассона) имеет вид:

,                                   (12.21)

где  – накопление теплоты,  – изменение теплосодержания.

Температурное поле является нестационарным. В отличие от протекания электрического тока, о температуре нельзя сказать, что ее изменения происходят только тогда, когда изменяются граничные условия. Наиболее очевидно это для стадии остывания, когда сварка закончена, все граничные условия постоянны, а температура продолжает изменяться. При этом протекают 2 процесса:

- выравнивание температуры между точками тела;

- остывание (выравнивание температуры между телом и окружающей средой).

Температура передается от точки к соседним точкам, поэтому при моделировании применима явная схема: следующее состояние точки можно определить по текущему состоянию данной и соседних с ней точек.

 



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 74; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.191.169 (0.006 с.)