Теорема. Общий достаточный признак сходимости знакопеременных рядов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теорема. Общий достаточный признак сходимости знакопеременных рядов.



Пусть дан знакопеременный ряд (2.3). Если сходится ряд, составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд (2.3).

Замечание: обратное утверждение несправедливо. Если сходится ряд (2.3), то это не означает, что будет сходиться ряд его модулей. Например, знакочередующийся ряд сходится по признаку Лейбница, а ряд, составленный из модулей членов этого ряда. Расходится, так как он является гармоническим рядом.

Абсолютная и условная сходимости числовых рядов

Знакопеременный ряд называется абсолютно сходящимся, если ряд, составленный из модулей его членов, сходится.

Знакопеременный ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

В приведенном примере ряд является условно сходящимся, а ряд абсолютно сходится.

Свойства абсолютно сходящихся рядов

1) Если ряд абсолютно сходится и имеет сумму S, то ряд, полученный из него перестановкой членов, также сходится и имеет ту же сумму S, что и исходный ряд (Теорема Дирихле. Переместительное свойство).

2) Абсолютно сходящиеся ряды с суммами можно почленно складывать (вычитать). В результате получается абсолютно сходящийся ряд, сумма которого равна  (или соответственно ).

3) Произведение двух абсолютно сходящихся рядов с суммами  есть абсолютно сходящийся ряд с суммой . Под произведением двух рядов понимают ряд вида:

Таким образом, абсолютно сходящиеся ряды суммируют, вычитают, перемножают как обычные ряды. Суммы таких рядов не зависят от порядка записи их членов.

В случае условно сходящихся рядов перечисленные свойства не имеют места. Поэтому действия над рядами нельзя производить. Не убедившись в их абсолютной сходимости. Для установления абсолютной сходимости используют все признаки сходимости знакоположительных рядов, заменяя всюду общий член ряда его модулем.

Степенные ряды

Ряд, членами которого являются функции от х, называется функциональным:    (14.4)

Придавая х определенное значение , получаем числовой ряд:

(14.5). Этот ряд может сходиться или расходиться. Если полученный ряд сходится, то точка  называется точкой сходимости ряда (14.4), если же ряд расходится – точкой расходимости функционального ряда.

Совокупность числовых значений аргумента х, при которых функциональный ряд сходится, называется областью сходимости ряда.

В области сходимости функционального ряда его сумма является некоторой функцией от х: S=S(x). Определяется она в области сходимости равенством: .

Среди функциональных рядов особую роль играет ряд, членами которого являются степенные функции аргумента х, т.е. степенной ряд имеет вид:    (14.6),

где - коэффициенты ряда действительные или комплексные числа,

- действительные переменные.

Степенной ряд, разложенный по степеням ,имеет вид:

(14.7),

где - некоторое постоянное число.

Область сходимости степенного ряда содержит, по крайней мере, одну точку

Теорема Абеля. Сходимость степенных рядов.

Если степенной ряд сходится при , то он абсолютно сходится при всех значениях х, удовлетворяющих неравенству .

Следствие: Если степенной ряд расходится при , то он расходится и при всех х, удовлетворяющих неравенству .



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 40; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.66.151 (0.006 с.)