Свойства определенного интеграла 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Свойства определенного интеграла



Пусть задана непрерывная на отрезке [a;b] функция  (где a<b). Тогда справедливы следующие теоремы:

1. Постоянный множитель можно выносить за знак интеграла:

, где с – некоторое число.

2. Определенный интеграл от алгебраической суммы конечного числа непрерывных на отрезке [a;b] функций равен алгебраической сумме определенных интегралов от слагаемых функций:

3. Если в определенном интеграле (где a<b) поменять местами пределы интегрирования, то определенный интеграл меняет знак на противоположный:

4. Если a<c<b, то . Это свойство называется аддитивностью определенного интеграла.

5. Теорема о среднем. Если функция  непрерывна на отрезке [a;b], то внутри отрезка найдется такая точка с, что для нее справедлива следующая формула:

 При f(x)≥0 теорема имеет простой геометрический смысл: значение определенного интеграла функции  на отрезке [a;b] равно площади прямоугольника с высотой f(c) и основанием (b-a).

6. Если функция f(x) сохраняет свой знак на отрезке [a;b], где a<b, то интеграл  имеет тот же знак, что и функция. Так, если f(x)≥0 на [a;b], то и .

7. Неравенство между непрерывными функциями на отрезке [a;b] можно интегрировать. Так, если , то .

Замечание: дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М соответственно наименьшее и наибольшее значения функции y=f(x) на отрезке [a;b], то справедливо следующее двойное неравенство:

 .

Если f(x)≥0, то геометрический смысл этого свойства заключается в следующем: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых отрезок [a;b], а высоты равны m и М.

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции: .

Так как , то . Отсюда и следует указанное неравенство .

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом.

 

Так как по формуле Ньтона-Лейбница , то

.

Это означает, что определенный интеграл с переменным верхним пределом есть одна из первообразных подынтегральной функции.

Лекция 10

 Вычисление определенного интеграла

1. Применение формулы Ньютона-Лейбница. Формула применяется во всех случаях, когда может быть найдена первообразная функция F(x) для подынтегральной функции f(x).

Пример.

2. Интегрирование подстановкой (замена переменной).

Теорема. Пусть для вычисления интеграла  от непрерывной функции была сделана подстановка х=φ(t), причем эта функция удовлетворяет следующим условиям: 1) функция х=φ(t) и ее производная х’=φ’(t) непрерывны при ; 2) отрезок  является областью определения функции х=φ(t), а отрезок [a;b] является областью ее значений; 3)  .

 Тогда справедлива следующая формула:

Пример.

3. Интегрирование по частям.

Теорема. Если функции u=u(x) и v=v(x) имеют непрерывные производные на отрезке [a;b], то имеет место формула:

Пример.

1)

2)

4. Интегрирование четных и нечетных функций в симметричных пределах.

 Пусть задана функция  непрерывная на отрезке [-a;a], симметричном относительно точки х=0. Тогда справедлива следующая формула:

Пример.

1) ; 2)

Лекция 11



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 74; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.190.41 (0.006 с.)