Лекция 12. Первообразная и неопределённый интеграл. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция 12. Первообразная и неопределённый интеграл.



12.1. Первообразная функция.

 

    Определение: Функция F(x) называется первообразной функцией  функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F¢(x) = f(x).

 

    Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.

 

 

12.2. Неопределенный интеграл.

 

    Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C.

Записывают:

 

    Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

 

    Свойства:

 

1.

2.

3.

4.  где u, v, w – некоторые функции от х.

6.

 

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

 

12.3. Таблица основных интегралов.

    Для удобства значения неопределенных интегралов большинства элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций.

        

 

   Интеграл

  Значение

   Интеграл

   Значение
1 -ln½cosx½+C 9    ex + C
2 ln½sinx½+ C 10    sinx + C
3    11   -cosx + C
4 12       tgx + C
5 13    -ctgx + C
6 ln 14 arcsin  + C
7 15
8      16   

 

12.4. Непосредственное интегрирование.

    Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

    Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования  можно сделать вывод, что искомый интеграл равен , где С – некоторое постоянное число. Однако, с другой стороны . Таким образом, окончательно можно сделать вывод:

    Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных.

    Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 39; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.131.100.60 (0.007 с.)