Кислородсодержащие функциональные производные 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кислородсодержащие функциональные производные



К кислородсодержащим функциональным производным относятся следующие классы органических соединений: спирты, фенолы, нафтолы, простые эфиры, органические перекиси, альдегиды, кетоны, органические кислоты и их производные (сложные эфиры, ангидриды и т.д.)

 

ГИДРОКСИЛСОДЕРЖАЩИЕ ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ

Органические соединения, имеющие в составе своих молекул группу –ОН называются гидроксилсодержащими функциональными производными. К ним относятся спирты, имеющие общую формулу R–OH, Ar–CH2OH (где R – углеводородный радикал, Ar – ароматический радикал; группа –ОН находится у sp3-гибридизованного атома углерода); а также фенолы Ar–OH (группа –ОН связана с sp2-гибридизованного атома углерода).

В зависимости от вида радикала различают насыщенные, ненасыщенные, циклические или ароматические спирты. По количеству групп –ОН – одноатомные, двухатомные, трех- и многоатомные спирты и фенолы.

Согласно правилу Эрленмейера, существование 2-х или 3-х гидроксилов у одного и того же атома углерода невозможно.

 

 

ОДНОАТОМНЫЕ СПИРТЫ

В зависимости от вида углеродного атома, с которым связан гидроксил, различают:

а) первичные спирты (CH3CH2ОН – этанол);

б) вторичные спирты

в) третичные спирты

 

Группа –ОН входит в название спирта суффиксом –ол, если она является самой главной группой, или приставкой гидрокси–, если она рассматривается как не самая главная группа.

Изомерия спиртов связана со строением радикала (изомерия углеродного скелета) и расположением группы –ОН. Для спиртов, имеющих асимметрический атом углерода, характерна стереоизомерия (будет рассмотрена в разделе “гидроксикислоты”).

Например, для спирта С4Н10О существуют изомеры:

 

СПОСОБЫ ПОЛУЧЕНИЯ

В природе в свободном состоянии спирты находятся мало, но их производные (простые и сложные эфиры, воски, лигнин и т.д.) широко распространены и используются для промышленного производства спиртов.

1) Гидролиз простых и сложных эфиров проводится в присутствии минеральных кислот.

2) Спиртовое брожение углеводов используется, в основном, для получения этилового спирта. Брожение моносахаридов происходит под действием определенного вида ферментов:

Для получения моносахара пищевое сырье: картофель или зерновые культуры после очистки разрыхляют, разваривают, вводят солод. В нем содержится фермент амилаза, которая осахаривает крахмалсожержащее сырье:

После осахаривания мальтозу подвергают гидролизу:

Полученную глюкозу сбраживают, затем отгоняют этиловый спирт и очищают его, т.к. в полученном отгоне содержатся примеси – сивушное масло, представляющее смесь пропанола, изопропанола, изобутанола, альдегидов, сложных эфиров.

3) Восстановление более окисленных соединений.

3.1 Восстановление альдегидов и кетонов позволяет получить первичные и вторичные спирты.

3.2 Восстановление карбоновых кислот приводит к образованию только первичных спиртов

4) Гидратация алкенов. Из этилена можно этим способом получить этанол (первичный спирт), из других алкенов – только вторичные или третичные спирты, т.к. присоединение воды протекает по правилу Марковникова.

 

5) Гидролиз галогенопроизводных. Реакция протекает в присутствии щелочей. В зависимости от вида галогенопроизводного можно получить первичный, вторичный или третичный спирт.

6) Оксосинтез. Последовательно действуя на алкены СО и Н2 при определенных to и р можно получить смесь первичных спиртов.

7) Металлорганический синтез. Присоединение к альдегидам и кетонам реактивов Гриньяра (магнийорганических соединений) с последующим гидролизом промежуточных продуктов позволяет получить первичные, вторичные или третичные спирты.

8) Получение спиртов из синтез газа (смеси СО и Н2). Метод используется в промышленности для получения метанола.

Физические свойства

Спирты с длиной углеродной цепочки до С11 – жидкости с характерным запахом, содержащие более 11 атомов углерода – твердые вещества без запаха. Спирты легче воды, многие ядовиты (10 мл метанола вызывает слепоту, большее количество – смерть), все – токсичны. Из-за ассоциации молекул за счет водородных связей  спирты имеют более высокие tкип по сравнению с ранее изученными классами органических соединений. Зависимость tкип и tпл от строения молекул спиртов имеет обычные, ранее наблюдавшиеся в других гомологических рядах закономерности.

ХИМИЧЕСКИЕ СВОЙСТВА

Химические свойства спиртов обусловлены наличием группы –ОН. Кислород гидроксила как более электроотрицательный атом оттягивает на себя электронную плотность от атома водорода и от атома углерода, связанных с ним:

Поэтому спирты в определенных условиях могут проявлять либо слабые кислотные, либо щелочные свойства, т.е. являются амфотерными соединениями.

Строение углеводородного радикала и положение группы –ОН существенно влияют на реакционную способность спиртов.

Все химические свойства спиртов можно разделить на реакции, протекающие с разрывом связей О–Н, С–ОН, а также дегидрирование и окисление.

1) Реакции, протекающие с разрывом связи О–Н.

Подвижность водорода в гидроксиле уменьшается в ряду метанол > первичные спирты > вторичные спирты > третичные спирты, т.е. по мере роста цепи реакционная способность уменьшается.

1.1 Образование алкоголятов. Спирты – слабые кислоты, но при действии металлов: К, Na, Mg или Al дают соли – алкоголяты, представляющие собой твердые вещества белого цвета.

 

1.2 Реакция Чугаева-Церевитинова – взаимодействие спиртов с магнийорганическими соединениями – протекает с выделением газообразного алкана, по количеству выделившегося газа судят о количестве групп –ОН.

1.3 Реакция этерификации. При взаимодействии спиртов с органическими или неорганическими кислотами образуются сложные эфиры. В реакции выделяется вода (молекула воды образуется из водорода гидроксила спирта и –ОН кислоты), при ее накоплении в продуктах происходит гидролиз полученного сложного эфира. Поэтому, из-за обратимости реакции этерификацию ведут при подкислении минеральными кислотами.

 

1.4 Образование простых эфиров. При взаимодействии двух молекул спирта при нагревании в присутствии водоотнимающих средств (Al2O3, H2SO4, H3PO4) происходит межмолекулярная дегидратация и образуется простой эфир.

Механизм реакции:

2) Реакции, идущие с разрывом связи С–ОН.

2.1 Замена гидроксила на галоген происходит при действии на спирты НСlсух, SOCl2, PCl3 или PCl5.

По уменьшению реакционной способности спирты располагаются в ряд: аллиловый > бензиловый > третичный > вторичный > первичный > метиловый.

2.2 Дегидратация спиртов. При нагревании молекулы спирта в присутствии водоотнимающих средств происходит внутримолекулярная дегидратация (отщепление воды происходит по правилу Зайцева). Реакционная способность падает в ряду: третичный спирт > вторичный > первичный.

Механизм реакции:

3) Дегидрирование спиртов протекает при пропускании спирта над раскаленными катализаторами Cu, Fe или Ni. При дегидрировании первичных спиртов образуются альдегиды, вторичных – кетоны.

4) Окисление происходит под действием на спирты KMnO4конц. при нагревании, хромовой смеси (H2SO4 + K2Cr2O7), О2 в присутствии катализатора (Сu). Первичные спирты окисляются до альдегидов, вторичные – до кетонов, третичные – с разрывом углеродной цепочки до смеси карбонильных соединений.

Легче окисляются первичные, труднее – вторичные, еще труднее – третичные спирты.

Применение.

Спирты применяются в пищевой, медицинской, парфюмерной промышленности; в химической – для синтеза разнообразных веществ, а также в качестве органических растворителей.

МНОГОАТОМНЫЕ СПИРТЫ

Органические соединения, содержащие в своем составе 2 или более гидроксильных групп называются многоатомными спиртами. В зависимости от количества гидроксильных групп они делятся на двухатомные спирты (диолы или гликоли); трехатомные или триолы; четырехатомные и т.д.

Согласно правилу Эрленмейера, у одного атома углерода может находиться не более одного гидроксила, поэтому спирты, содержащие геминальные гидроксигруппы, выделить не удается.

Изомерия многоатомных спиртов обусловлена строением углеводородного радикала, положением гидроксильной группы и их пространственным расположением. Изомеры для спирта С4Н10О:

По номенклатуре IUPAC при составлении названия многоатомного спирта добавляется к суффиксу –ол умножающая приставка ди-, три-, тетра- и т.д. в зависимости от количества гидроксилов в молекуле.

 

СПОСОБЫ ПОЛУЧЕНИЯ

Для получения многоатомных спиртов используют те же способы, что и для получения одноатомных спиртов.

1) Гидролиз галогенопроизводных. Проводится водными растворами щелочей:

2) Реакция Вагнера. Действием разбавленного раствора KMnO4 на алкены можно получить двухатомные спирты:

Кроме раствора KMnO4 может бвть также использована перекись водорода (Н2О2).

3) Гидролиз эпоксидов (α -окисей).

4) Получение глицерина гидролизом жиров (триглицеридов):

5) Получение глицерина из пропилена

 

Физические свойства

Введение дополнительной группы –ОН сказывается на свойствах многоатомных спиртов таким образом, что из-за появления дополнительных водородных связей увеличивается температура кипения и т.д. Низшие гликоли – хорошо растворимые в воде вязкие жидкости. Большинство многоатомных спиртов имеют сладкий вкус, поэтому некоторые из них используются в качестве таких пищевых добавок как заменители сахара.

 

 

ХИМИЧЕСКИЕ СВОЙСТВА

Химические свойства многоатомных спиртов близки к свойствам одноатомных. В реакциях могут участвовать как одна, так и все гидроксигруппы. Многоатомные спирты – более сильные кислоты, чем одноатомные, поэтому они могут вступать в реакции не только с Na и К, но и с гидроксидами тяжелых металлов с образованием комплексных соединений.

1) Качественная реакция на 1,2-диолы (взаимодействие с Cu(OH)2 – в результате образуется раствор интенсивного синего цвета:

 

2) Окисление гликолей происходит при действии тех же окислителей, какими окисляются одноатомные спирты. Реакция идет постадийно по каждому гидроксилу:

 

3) Реакция этерификации идет в тех же условиях, что и для одноатомных спиртов. Практический интерес представляет реакция:

При взаимодействии глицерина с высшими карбоновыми кислотами (количество углеродных атомов больше 12) образуются сложные эфиры – триглицериды, являющиеся жирами или маслами, в зависимости от вида кислотного остатка.

4) Получение нитроглицерина – реакция этерификации глицерина азотной кислотой в присутствии H2SO4. Образующийся нитроглицерин является взрывчатым веществом.

5) Получение циклических эфиров. При действии H2SO4 при повышенной температуре происходит межмолекулярная дегидратация сразу по обоим гидроксилам.

Образующийся диоксан используется в качестве растворителя.

6) Внутримолекулярная дегидратация гликолей идет при нагревании в присутствии H2SO4. α-, β- и γ-гликоли дают различные продукты реакции.

Происходит образование альдегидов.

Происходит образование непредельных спиртов.

Происходит образование внутренних циклических эфиров.

Применение.

Этиленгликоль применяется в текстильной, табачной, косметической промышленности в качестве гигроскопичного вещества. Водные растворы этиленгликоля замерзают при пониженной температуре (50 %-ный раствор – при -37 оС), поэтому их используют для изготовления антифризов.

Глицерин используется в химической, пищевой (для приготовления безалкогольных напитков, ликеров и т.д.), бумажной, кожевенной, косметической промышленности (как смягчающее средство). Водные растворы глицерина применяют в качестве антифризов (67 %-ный раствор замерзает при -46,5 оС).

Ксилит НОСН2(СНОН)3СН2ОН – применяют в пищевой промышленности как заменитель сахара, для приготовления разнообразных напитков, кондитерских и др. изделий.

Сорбит СН2ОН(СНОН)4СН2ОН – такая же области применения, как у ксилита.

 

 

ФЕНОЛЫ, НАФТОЛЫ

Если гидроксильная группа связана с ароматическим ядром, то такие кислородсодержащие функциональные производные называются фенолами или нафтолами. По количеству групп –ОН различают:

одноатомные

двухатомные

трехатомные

 и т.д.

Изомерия фенолов и нафтолов связана с различным положением гидроксильных групп и заместителей в ядре.

 

СПОСОБЫ ПОЛУЧЕНИЯ

1) Гидролиз галогенопроизводных идет в более жестких условиях, чем при получении спиртов (т.е. при нагревании и повышенном давлении) под действием водных растворов щелочей:

 

2) Замена аминогруппы на гидроксил проводится действием азотистой кислоты:

 

 

3) Разложение гипериза (гидропероксида кумила) действием разбавленного раствора H2SO4 при нагревании – промышленный способ получения фенола и ацетона

4) Из бензолсульфокислот – сплавление ароматических сульфокислот со щелочами:

 

Физические свойства

Фенолы и нафтолы – кристаллические вещества, труднорастворимые в воде. Обладают специфическим запахом, более высокими tкип и ρ по сравнению со спиртами. Очень токсичны.

 

ХИМИЧЕСКИЕ СВОЙСТВА

Химические свойства фенолов обусловлены наличием гидроксигруппы и ароматического ядра. Фенолы – более сильные кислоты, чем спирты, способны вступать в реакцию со щелочами и даже Na2CO3, т.к. неподеленная электронная пара атома кислорода вступает во взаимодействие с бензольным ядром (+М),

атом водорода может легко отщепляться в виде Н+.

1) Образование фенолятов происходит при взаимодействии с Na, K или щелочами (NaOH, KOH):

2) Взаимодействие с FeCl 3 – качественная реакция на фенолы, образуются интенсивно окрашенные комплексные соединения:

3) Образование простых эфиров происходит в присутствии водных растворов щелочей при нагревании. Образуется фенолят Na, действием на который галогенопроизводных, диметилсульфата и некоторых др. реагентов можно получить простые эфиры фенола.

4) Образование сложных эфиров – при взаимодействии с хлорангидридами и ангидридами кислот:

Для фенолов затруднены реакции, связанные с заменой группы –ОН.

5) Восстановление фенолов происходит водородом при 150 оС и р=20·105Па над катализатором Ni/Al2O3. В результате получаются циклические спирты:

 

6) Окисление фенолов протекает очень легко. Даже при стоянии при tкомн. фенолы быстро темнеют, поглощая кислород воздуха. Легкая окисляемость позволяет использовать пространственно затрудненные фенолы в качестве антиоксидантов в пищевой промышленности (для сохранения свойств жиров, масел, кондитерских изделий, концентратов, рыбы, мяса и т.д.) и химической промышленности (замедление старения каучука).

7) Реакции углеводородного радикала. Взаимное влияние группы –ОН и ароматического ядра сильно активирует реакции электрофильного замещения, которые протекают в о - или п -положение по отношению к гидроксилу.

 

Имея сильно активированное ядро, фенолы вступают во взаимодействие даже со слабыми электрофилами, например, с азотистой кислотой:

 



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 70; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.227.194 (0.07 с.)