Тема 2.5 Алкины (ацетиленовые углеводоролы) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 2.5 Алкины (ацетиленовые углеводоролы)



Алкины (ацетиленовые углеводороды) – непредельные алифатические углеводороды, молекулы которых содержат тройную связь C≡C. В образовании такой связи участвуют атомы углерода в sp -гибридизованном состоянии

Общая формула гомологического ряда алкинов СnН2n-2.

Простейшие представители:

 

Строение молекулы ацетилена:

Тройную связь C≡C осуществляют 6 общих электронов:

Каждый из атомов углерода имеет по две sp -гибридных орбитали, направленных друг к другу под углом 180°, и две негибридных р -орбитали, расположенных под углом 90° по отношению друг к другу и к sp -гибридным орбиталям:

π-Cвязи располагаются во взаимно перпендикулярных плоскостях:

σ-Cвязи, образуемые sp –гибридными орбиталями углерода, располагаются на одной прямой (под углом 180° друг к другу). Поэтому молекула ацетилена имеет линейное строение:

Номенклатура алкинов

По систематической (международной) номенклатуре ИЮПАК названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на –ин:

2 атома С → эт ан → эт ин; 3 атома С → проп ан → проп ин и т.д.

Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь (т.е. она может быть не самой длинной).

Нумерацию углеродных атомов начинают с ближнего к тройной связи конца цепи. Цифра, обозначающая положение тройной связи, ставится обычно после суффикса –ин.

Например:

Изомерия алкинов

Структурная изомерия

1. Изомерия положения тройной связи (начиная с С4Н6):

2. Изомерия углеродного скелета (начиная с С5Н8):

3. Межклассовая изомерия с алкадиенами и циклоалкенами, начиная с С4Н6:

Пространственная изомерия в алкинах относительно тройной связи не проявляется, т.к. заместители могут располагаться только одним способом – вдоль линии связи.

Способы получения алкинов

Ацетилен и его гомологи являются важнейшими исходными продуктами в производстве многих органических веществ и материалов. Их получают в больших количествах, используя ряд промышленных и лабораторных методов:

1. Пиролиз метана:

2. Пиролиз этана или этилена:

3. Гидролиз карбида кальция:

 4. Дегидрогалогенирование дигалогеналканов спиртовым раствором щелочи (щелочь и спирт берутся в избытке):

 

 

5. Удлинение цепи (алкилирование ацетиленидов) при действии на ацетилениды алкилгалогенидами:

 

 

Физические свойства алкинов

 Температуры кипения и плавления ацетиленовых углеводородов увеличиваются с ростом их молекулярной массы. При обычных условиях алкины С2Н2 - С4Н6 – газы, С5Н8 - С16Н30 – жидкости, с С17Н32 – твердые вещества. Температуры кипения и плавления алкинов выше, чем у соответствующих алкенов. Алкины плохо растворимы в воде, лучше – в органических растворителях.

Химические свойства алкинов

Свойства алкинов сходны со свойствами алкенов, что обусловлено их ненасыщенностью, поэтому для них характерны  реакции электрофильного присоединения.

Примеры реакций присоединения к алкинам:

1. Гидрирование

В присутствии металлических катализаторов (Pt, Ni) алкины присоединяют водород с образованием алкенов (разрывается первая π-связь), а затем алканов (разрывается вторая π-связь):

2. Галогенирование

Электрофильное присоединение галогенов к алкинам протекает медленнее, чем для алкенов (первая π-связь разрывается труднее, чем вторая):

 

Алкины обесцвечивают бромную воду (качественная реакция на кратную связь).

3. Гидрогалогенирование

Присоединение к несимметричным алкинам определяется правилом Марковникова:

Гидрохлорирование ацетилена используется в одном из промышленных способов получения винилхлорида:

Винилхлорид является исходным веществом (мономером) в производстве поливинилхлорида (ПВХ).

Особые реакции алкинов

1. Гидратация (реакция Кучерова):

Присоединение воды происходит в присутствии катализатора соли ртути (II) и идет через образование неустойчивого непредельного спирта, который изомеризуется в уксусный альдегид (в случае ацетилена):

или в кетон (в случае других алкинов):

2. Полимеризация:

- Димеризация под действием водно-аммиачного раствора CuCl:

 

- Тримеризация ацетилена над активированным углем приводит к образованию бензола (реакция Зелинского):

 

 

3. Образование солей:

Замещение атома водорода у углерода с тройной связью на металл, проявление слабокислотных свойств; при этом образуются соли - ацетилениды:

 

При взаимодействии ацетилена (или R–C≡C–H) с аммиачными растворами оксида серебра или хлорида меди (I) выпадают осадки нерастворимых ацетиленидов:

Образование серовато-белого осадка ацетиленида серебра (или красно-коричневого – ацетиленида меди RC≡CCu) служит качественной реакцией на концевую тройную связь. Если тройная связь находится не на конце углеродной цепи, то кислотные свойства отсутствуют (нет подвижного атома водорода) и ацетилениды не образуются:

4. Окисление алкинов:

· При жестком окислении (нагревание, концентрированные растворы, кислая среда) происходит расщепление углеродного скелета молекулы алкина по тройной связи и образуются карбоновые кислоты:

 

 

· Мягкое окисление без разрыва σ-связи С–С происходит при действии разбавленного раствора перманганата калия, который при этом обесцвечивается. Данная реакция доказывает ненасыщенность алкинов и является качественной на кратную связь, в этих условиях из ацетилена образуется щавелевая кислота:

· Полное окисление алкинов происходит при их сгорании до CO2 и H2O. Горение ацетилена сопровождается выделением большого количества тепла (Q = 1300 кДж/моль):

Температура ацетиленово-кислородного пламени достигает 2800-3000 °С. На этом основано применение ацетилена для сварки и резки металла.

Ацетилен образует с воздухом и кислородом взрывоопасные смеси.
В сжатом, и особенно в сжиженном, состоянии ацетилен способен взрываться от удара.

Применение алкинов

   Ацетилен используется для получения самых разнообразных веществ: для синтеза винилхлорида, являющегося мономером для получения высокомолекулярного продукта – поливинилхлорида; для получения винил ацетилена – важного промежуточного продукта в производстве синтетического хлоропренового каучука; для производства уксусного альдегида, из которого получают уксусную кислоту; а также для автогенной сварки.

Схема реакции получения хлоропренового каучука из винилацетилена:



Поделиться:


Последнее изменение этой страницы: 2021-06-14; просмотров: 102; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.8.82 (0.013 с.)