Энтальпия химической реакции. Расчёт по табличным данным (обоснование). 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Энтальпия химической реакции. Расчёт по табличным данным (обоснование).



Тепловой эффект реакции, измеренный при постоянных температуре и давлении, называется теплотой реакции, а противоположная ему по знаку величина, описывающая изменение энергетического состояния системы в результате протекания реакции - энтальпией реакции. Расчет тепловых эффектов (энтальпий) химических реакций основаны на применении закона Гесса: энтальпия химической реакции не зависит от способа ее проведения, а зависит лишь от начального и конечного состояния реагирующих веществ. Наиболее важное на практике следствие закона Гесса: энтальпия химической реакции равна разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ (реагентов). Уравнения реакций, записываемые с тепловым эффектом, называются термохимическими. Закон Гесса позволяет обращаться с ними, как с алгебраическими уравнениями. Например, можно провести следующие реакции и измерить их тепловые эффекты:

Ск + О = СО + 393.5 кДж, ΔН = -393.5 кДж

2СОг+ О = 2СО+ 566 кДж, ΔН = -566 кДж Отсюда можно вычислить изменение энтальпии в реакции, которую затруднительно провести на практике: Ск + О = СО

 

5. Энергетические эффекты химических реакций. Формы выделения и поглощения энергии. Теплота и работа. Методы и условия их измерения (3 примера).

Закон сохранения энергии: энергия не создаётся из ничего и не может превратиться в ничто; если в течение процесса исчезает энергия определённого вида, то взамен появляется эквивалентное количество энергии другого вида. Внутренняя энергия есть функция состояния. В случае закрытой системы следствием закона сохранения энергии является то, что изменение внутренней энергии системы U равно разности сообщаемой системе теплоты Q и совершаемой ею при этом работы А:

Δ U = Q - А

Если в процессе поглощения или выделения теплоты никакая работа не совершается (А = 0, а это возможно только, если объём системы не изменяется, т.е. в изохорном процессе), то вся теплота расходуется на изменение внутренней энергии (последняя возрастает, когда система теплоту поглощает - эндотермический процесс, и убывает, когда теплота выделяется во внешнюю среду - экзотермический процесс): Qv = Δ U

В эндотермическом процессе, следовательно, ΔU>0 и в экзотермическом ΔU<0. Если в процессе обмена теплотой с внешней средой, осуществляемом при постоянном давлении, т.е. в изобарном процессе, единственным видом работы оказывается работа расширения. Экспериментальное определение теплового эффекта химической реакции проводят в специальных приборах - калориметрах.

В результате химической реакции происходит разрыв связей между атомами элементов, входящих в исходные вещества, и образование новых связей в продуктах реакции. Очевидно, что сумма энергий связей после реакции не равна сумме энергий связей до реакции, т.е. протекание химической реакции всегда сопровождается выделением или поглощением энергии, причём формы ей могут быть различны: теплота, свет, механическая работа, электрический ток и т.д.

Химические реакции протекают с выделением или поглощением энергии. Обычно эта энергия выделяется или поглощается в виде теплоты. Так, горение, соединение метала с серой или с хлором,
нейтрализация кислот щелочами сопровождаются выделением значительных количеств теплоты. Haоборот, такие реакции, как разложение карбоната кальция, образование оксида азота (II) из азота и кислорода, требуют для своего протекания непрерывного притока теплоты извне и тотчас же приостанавливаются, если нагревание прекращается. Ясно, что эти реакции протекают с поглощением теплоты. Изменение внутренней энергии системы ΔU при том или ином процессе можно определять. Пусть к системе подводится теплота, в результате чего она переходит из начального состояния 1 в конечное состояние 2, совершая при этом работу W. Значит, подведенная теплота израсходована на изменение внутренней энергии системы и работу против внешних сил:

ΔQ = Δ U + W, где ΔQ - количество теплоты; ΔU – изменение внутренней энергии; W - работа против внешних сил. Это другая запись закона сохранения энергии. В дальнейшем в качестве работы мы будем учитывать только работу газа против внешнего давления (расширения газа) как наиболее часто встречающуюся при протекании термодинамических процессов. Она рассчитывается по формуле:

W = ∫12 P · dV

При постоянном давлении ее значение определяется равенством W = P (V 1 - V 2).

Теплота Q не является функцией состояния, но в различных процессах она связана с функциями состоянии. При изохорном процессе объем системы остается постоянным. Такие процессы реализуются в герметично закрытых реакторах - автоклавах. При этом dW = P · dV, в ходе процесса не производится работа расширения против внешнего давления, тогда:

dQv = dU или Δ Qv = ΔU, где ΔQv - теплота, поглощенная системой в изохорном процессе (в условиях постоянного объема). Вся подводимая (или отводимая) теплота идет на изменение внутренней энергии системы. В случае химической реакции, протекающей без изменения объема системы, изменение внутренней энергии равно взятому с обратным знаком тепловому эффекту этой реакции.

 

6. Энтальпия образования вещества, стандартное состояние вещества.

Величина Н называется энтальпией; её изменение определяется тепловой эффект процесса, проводимого при постоянном давлении. Так же, как и в случае изменения U, в эндотермическом процессе энтальпия системы возрастает (ΔН>0) и в экзотермическом убывает (ΔН<0). Как и внутренняя энергия, энтальпия является функцией состояния, т.е. не зависит от пути, каким система пришла в данное состояние. Энтальпией образования вещества называется энтальпия реакции образования 1 моль вещества в стандартном состоянии из соответствующих простых веществ, также взятых в стандартных состояниях. Из такого определения следует, что энтальпии образования простых веществ равны нулю. Экспериментально определенные энтальпии образования веществ обобщены в термодинамических таблицах.

В качестве стандартного состояния вещества выбирают, как правило, наиболее устойчивое его состояние при стандартном давлении (1 атм. = 101325 Па) и данной температуре. Так, при комнатной температуре стандартных состоянием кислорода будет его газообразное состояние с парциальным давлением 1 атм., при температуре 0ºС стандартным состоянием воды будет твердое, в интервале 0-100ºС - жидкое и при более высоких температурах - газообразное. Обычно табличные значения стандартных энтальпий образования приводятся для так называемой стандартной температуры 25ºС = 298.15 К. Важно также учитывать агрегатные состояния веществ, для которых проводятся термодинамические расчеты. Важнейшее для термохимических расчетов следствие закона Гесса: энтальпия реакции равна разности энтальпий образования продуктов реакции и энтальпий образования исходных веществ.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 249; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.126.5 (0.006 с.)