Определение основных параметров и показателей нагруженности сцепления 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение основных параметров и показателей нагруженности сцепления



Выбор размеров сцепления производится из условия передачи максимального крутящего момента двигателя посредством трения с некоторым запасом.

Статический момент трения сцепления , Н×м, определяют по формуле

,                                                 (1.1)

где – максимальный крутящий момент двигателя, Н×м;  – коэффициент запаса сцепления.

Значение коэффициента запаса сцепления выбирается с учетом неизбежного уменьшения коэффициента трения накладок в процессе эксплуатации, усадки нажимных пружин, наличия регулировки нажимного усилия, числа ведомых дисков. С другой стороны, пиковые нагрузки в трансмиссии, независимо от их происхождения, должны ограничиваться пробуксовыванием сцепления. По этой причине коэффициент запаса сцепления не должен превышать определенного значения.

Средние значения коэффициента запаса сцепления можно принять по рекомендациям [5]:

· для легковых автомобилей – = 1,2 ¸ 1,75;

· для грузовых автомобилей – = 1,5 ¸ 2,2;

· для АТС повышенной проходимости – = 1,8 ¸ 3,0.

Ориентировочно наружный диаметр дисков , см, определяют по формуле

,                                                    (1.2)

где  – максимальный крутящий момент двигателя, кг×см; А – эмпирический коэффициент.

Величина эмпирического коэффициента выбирается в зависимости от типа транспортного средства [2]:

· для легковых автомобилей – А = 4,7;

· для грузовых автомобилей – А = 3,6;

· для АТС повышенной проходимости – А = 1,9.

При этом внутренний диаметр d, см, фрикционных накладок ориентировочно составляет:

.                                                (1.3)

Рассчитанные величины необходимо привести в соответствие с требованиями ГОСТ 12238 – 76 (таблица 1.1) [5].

 

Таблица 1.1 – Диаметры фрикционных накладок

D, мм 180 200 215 240 250 280 300
d, мм 100, 120, 125 120, 130, 140 140, 150, 160 160, 180 155, 180 165, 180, 200 165, 175, 200

 

 Продолжение табл. 1.1

D, мм 325 340 350 380 400 420
d, мм 185, 200, 220, 230 185, 195, 210 195, 200, 210, 240, 290 200, 220, 230 220, 240, 280 220, 240, 280

 

Средний радиус дисков , м, определяют по формуле

.                                                       (1.4)

 

 

Нажимное усилие пружин , Н, рассчитывают по формуле

                                                  (1.5)

где – расчетный коэффициент трения; i – число пар трения.

Расчетный коэффициент трения зависит от ряда факторов: параметров фрикционных материалов, состояния и относительной скорости скольжения поверхностей трения, давления, температуры.

Расчетный коэффициент трения –  = 0,25 ¸ 0,3 [3].

Число пар трения [5]:

· для однодисковых сцеплений – i = 2;

· для двухдисковых сцеплений – i = 4.

Для сцепления с периферийными цилиндрическими пружинами (рис. 1.1) нажимное усилие пружин , Н, рассчитывают по формуле

                              (1.6)

где – диаметр проволоки пружины, м;  – напряжение кручения пружины, Па; – число нажимных пружин; – диаметр пружины, м.

Рисунок 1.1 – Схема цилиндрической нажимной пружины

 

Обычно сцепление проектируется так, чтобы при выключении нажимное усилие пружин увеличивалось на 20 %, то есть:

                              (1.7)

где – усилие пружины при выключении сцепления, Н; – максимальное напряжение кручения, Па.

Максимальное напряжение кручения –  = 700 ¸ 900 МПа [4].

Число пружин выбирается в зависимости от наружного диаметра фрикционных накладок (таблица 1.2) [2] и должно быть кратно числу рычагов выключения.

 

Таблица 1.2 – Число нажимных пружин

D, мм 180 ¸ 250 280 300; 325 350; 380 400; 420
6 9 12 16 28

 

Нагрузка на пружину не должна превышать = 800Н [4].

Принимается = 3 ¸ 10 [4].

После выбора отношения  по формуле определяются диаметры проволоки и пружины, после чего согласовываются в соответствии с [5]:

 – 1,0; 1,2; 1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0.

– 16,0; 18,0; 20,0; 22,0; 25,0; 28,0; 32,0; 36,0; 40,0; 45,0; 50,0; 55,0; 60,0; 70,0.

После согласования уточняют нажимное усилие пружин по формуле (1.6).

Диафрагменная пружина (рисунок 1.2) представляет собой пружину Бельвиля, модифицированную для использования в автомобильных сцеплениях.

Рисунок 1.2 – Расчетная схема диафрагменной пружины

 

Нажимное усилие , Н, диафрагменной пружины определяют по формуле

,            (1.8)

где Е – модуль упругости первого рода, Па; d – толщина диафрагменной пружины, м; – перемещение пружины в месте приложения силы, действующей со стороны ведомого диска, м; k1, k2 – коэффициенты; h – высота сплошного кольца диафрагменной пружины, м;  – коэффициент Пуассона; – наружный диаметр сплошного кольца диафрагменной пружины, м.

Модуль упругости 1-го рода – Е = 2·105 МПа [4].

Толщина диафрагменной пружины – d = 2,0 ¸ 2,5 мм [4].

Перемещение пружины в месте приложения силы –  = 1,5 ¸ 2,0 мм [2].

Коэффициент Пуассона = 0,25 [4].

Коэффициенты определяют по формулам (1.9), (1.10):

,                                                        (1.9)

где – внутренний диаметр сплошного кольца диафрагменной пружины, м.

Поскольку в расчетах можно принять , то из рекомендуемого соотношения = 1,2 ¸ 1,5 [5] можно найти внутренний диаметр сплошного кольца.

,                                                      (1.10)

где  – средний диаметр сплошного кольца диафрагменной пружины, м.

Средний диаметр , м, сплошного кольца диафрагменной пружины можно приближенно вычислить по формуле

.                                                 (1.11)

Усилие при выключении , Н, отличается от нажимного усилия передаточным числом диафрагменной пружины:

,                                         (1.12)

где – внутренний диаметр лепестков диафрагменной пружины, м.

Внутренний диаметр лепестков , м, диафрагменной пружины можно определить из рекомендованного соотношения [4]:

2,5.

Высоту сплошного кольца диафрагменной пружины можно найти, задаваясь значением из рекомендованного соотношения [4]:

= 1,5 ¸ 2,0.

Отношение высоты сплошного кольца диафрагменной пружины к ее толщине определяет нелинейность пружины. При 1,6 на характеристике пружины имеется большая область с постоянной осевой силой; при 2,8 возможно «выворачивание» пружины.

Давление на фрикционные накладки , Па, рассчитывают по формуле

,                                             (1.13)

где F – площадь поверхности одной стороны фрикционной накладки, м2.

Допустимые давления на фрикционные накладки – [ ] = 0,15 ¸ 0,25 МПа [4].

Меньшие значения имеют сцепления грузовых автомобилей и автобусов или автомобилей, работающих в тяжелых дорожных условиях; большие значения – сцепления легковых автомобилей.

К показателям нагруженности деталей сцепления относятся удельная работа буксования (отражающая также износостойкость сцепления) и нагрев деталей сцепления при одном трогании с места.

Удельную работу буксования сцепления , Дж/м2, рассчитывают по формуле

,                                         (1.14)

где  – работа буксования, Дж.

Работу буксования , Дж, определяют по формуле

,                                        (1.15)

где  – момент инерции приведенного к коленчатому валу двигателя маховика, заменяющего поступательно движущуюся массу автомобиля, кг×м2;  – угловая скорость коленчатого вала, рад/с;  – момент сопротивления движению автомобиля, приведенный к коленчатому валу двигателя, Н×м.

При определении работы буксования следует иметь в виду, что формула (1.15) выведена при следующих допущениях:

· для исключения влияния водителя предполагается, что сцепление включается мгновенно;

· угловая скорость коленчатого вала двигателя в процессе включения постоянна;

· крутящий момент двигателя, равный передаваемому сцеплением моменту, растет пропорционально времени;

· момент сопротивления движению – величина постояная.

Такая идеализация процесса включения сцепления позволяет проводить лишь ориентировочные расчеты. Для повышения точности результатов следует учитывать упругие свойства трансмиссии как колебательной системы и изменение переменных, входящих в формулу (1.15) в реальных условиях эксплуатации.

Момент инерции условного маховика , кг×м2, заменяющего собой поступательно движущуюся массу автомобиля, рассчитывают по формуле

,                                                   (1.16)

где  – момент инерции маховика двигателя, кг×м2;  – момент инерции условного маховика, приведенного к ведущему валу коробки передач, кг×м2.

Величины момента инерции маховиков приведены в таблице 1.4 [6].

 

Таблица 1.4 – Момент инерции маховика двигателя

Автомобиль ЗАЗ-968 ВАЗ-2101 ВАЗ-2121 Москвич-2140 ГАЗ-24
, кг·м2 0,118 0,130 0,130 0,170 0,310

 

Продолжение табл. 1.4

Автомобиль УАЗ-469 РАФ-2203 ПАЗ-3201 ЛиАЗ-677 ЛАЗ-695Е
, кг·м2 0,360 0,314 0,510 1,070 0,991

 

Продолжение табл. 1.4

Автомобиль ЛАЗ-699Н ГАЗ-52 ГАЗ-3307 ЗИЛ-431410 ЗИЛ-133
, кг·м2 1,740 0,491 0,510 0,991 0,991

 

Продолжение табл. 1.4

Автомобиль КамАЗ-5320 Урал-375 КрАЗ-257 МАЗ-5551 МАЗ-5432
, кг·м2 2,070 1,740 4,61 2,60 4,61

 

 

Момент инерции условного маховика , кг×м2, приведенного к ведущему валу коробки передач, рассчитывают по формуле

,                                                   (1.17)

где  – полная масса автомобиля, кг; – радиус качения колеса, м;  – передаточное число главной передачи;  – передаточное число первой ступени коробки передач.

Угловую скорость коленчатого вала двигателя , рад/с, для автомобилей с бензиновыми двигателями рассчитывают по формуле

,                                              (1.18)

где  – угловая скорость при максимальном крутящем моменте, рад/с.

Для автомобилей с дизелями угловую скорость коленчатого вала двигателя , рад/с, определяют по формуле

,                                                  (1.19)

где  – угловая скорость при максимальной мощности, рад/с.

Угловую скорость коленчатого вала двигателя , рад/с, определяют по формуле

,                                                       (1.20)

где  – частота вращения коленчатого вала двигателя, об/мин.

Момент сопротивления движению автомобиля, приведенный к коленчатому валу двигателя , Н×м, рассчитывают при допущении о равенстве радиусов качения всех колес автомобиля по формуле

,                                              (1.21)

где g – ускорение свободного падения, м/с2;  – коэффициент общего дорожного сопротивления; – КПД трансмиссии.

Ускорение свободного падения – g = 9,8 м/с2 [5].

Коэффициент общего дорожного сопротивления – = 0,02 [4].

КПД механической трансмиссии  принимают согласно данным таблицы 1.5 [5] в зависимости от типа АТС и типа главной передачи.

 

Таблица 1.5 – КПД механической трансмиссии

Легковые АТС

Грузовые АТС

и автобусы

Много-

приводные АТС

классической компоновки передне-приводные с одинарной главной передачей с двойной главной передачей
0,92 0,95 0,9 0,86 0,84

 

Допустимая удельная работа буксования [4]:

· для легковых автомобилей – [ ] = 50 ¸ 70 Дж/см2;

· для грузовых автомобилей – [ ] = 15 ¸ 120 Дж/см2;

· для автопоездов – [ ] = 10 ¸ 40 Дж/см2.

При определении теплового режима сцепления рассчитывается нагрев ведущего диска. Маховик имеет значительно большую массу, чем нажимной диск, и поэтому температура его нагрева сравнительно невелика.

При расчете нагрева ведущего диска принимается допущение, что теплопередача в окружающую среду отсутствует и вся работа буксования используется на нагрев диска.  

Нагрев ведущего диска , °С, при одном трогании с места рассчитывают по формуле

,                                                   (1.22)

где  – доля теплоты, поглощаемая диском;  – масса нажимного диска, кг;  – удельная теплоемкость стали, Дж/(кг×град).

Доля теплоты, поглощаемая диском [4]:

· для ведущего диска однодискового сцепления и среднего диска двухдискового – = 0,5;

· для наружного нажимного диска двухдискового сцепления – = 0,25.

Радиальные размеры дисков выбираются, исходя из размеров фрикционных накладок. Толщина нажимного диска , м, предварительно принимается в зависимости от наружного диаметра накладок и затем уточняется по результатам теплового расчета сцепления:

.                                            (1.23)

Удельная теплоемкость стали –  = 481,5 Дж/(кг×град) [5].

Плотность стали –  = 7600 ¸ 7800 кг/м3 [5].

Допустимый нагрев нажимного диска – [ ] = 10 ¸ 15 °С [4].

Полученная расчетная температура является условной (определение ее проведено при одном трогании автомобиля с места) и используется при сравнительной оценке конструкций сцеплений различных типов. В действительности же процесс нагрева дисков значительно сложнее, и поэтому температура деталей сцепления в процессе работы автомобиля значительно выше.

При выборе основных параметров сцеплений и их приводов могут быть использованы данные таблицы 1.6 [5].

 

Расчет привода сцепления

Удобство управления сцеплением обеспечивается правильным выбором передаточного числа привода, чтобы иметь:

1. Оптимальную величину перемещения педали, не более [5]:

· для легковых автомобилей –  = 160 мм;

· для грузовых автомобилей –  = 190 мм.

2. Максимальную величину усилия на педали, не более [3]:

· сцепления с усилителем –   = 150 Н;

· сцепления без усилителя –  = 250 Н.

Механические приводы (рисунок 1.3, а) в настоящее время применяются только на легковых автомобилях особо малого класса; на грузовых автомобилях, автобусах и легковых автомобилях малого класса и выше применяют гидропривод (рисунок 1.3, б).


Таблица 1.6 – Основные параметры фрикционных дисковых сцеплений

Параметр, размерность

МеМЗ-968

АЗЛК-412

ВАЗ-2101

ВАЗ-2103

ВАЗ-2121

ГАЗ-24

ГАЗ-53

ЗИЛ-130

ЯМЗ

14 236К 238
1 2 3 4 5 6 7 8 9 10 11 12
Максимальный крутящий момент двигателя, Н·м 74,5 111,8 87,3 105,9 121,6 186,3 284,4 402,1 637,4 666,9 882,6
Число ведомых дисков 1 1 1 1 1 1 1 1 2 2 2
Коэффициент запаса сцепления 2,08 1,57 2,05 1,62 1,44 1,55 1,81 2,15 2,0 2,35 2,14
Допустимая частота вращения, об/мин   4400   5800   7000   7000   7000   4500   3200   3200   2600   2100   2100
Фрикционные накладки, мм: наружный диаметр внутренний диаметр толщина   190 130 3,5   204 146 3,3   200 142 3,3   200 142 3,3   200 130 3,3   225 150 3,5   300 164 4,0   342 186 4,0   350 200 4,5   400 220 4,0   400 220 4,0
Максимальный диаметр кожуха сцепления, мм   245   270   263   263   263   279   352   400   410   464   460
Число рычагов выключения   3   181   181   181   181   3   3   4   4   4   4
Нажимные пружины: число усилие в выключенном сцеплении, кН усилие во включенном сцеплении, кН радиус установки, мм   6   4,07   3,72 80   1   –   – 1942   1   –   – 1952   1   – – 187,52   1   –   – 187,52   9 2   5,50   5,14 89   12   8,39   7,54 108   16   12,00   10,90 126   12   13,30   11,18 125     14 2   11,84   11,06 168 и 128     12 2   13,78   12,90 168 и 128

 

 

Продолжение табл. 1.6

1 2 3 4 5 6 7 8 9 10 11 12
Параметры нажимной пружины: жесткость, Н/мм диаметр проволоки, мм средний диаметр, мм усилие в рабочем состоянии, Н число рабочих витков     40,2 4,0 25 623 4,0     – 2,293 – 33404     – 2,23 – 34944     – 2,23 – 30894     – 2,323 – 36204     5,7 и 10,1 3,0 28,5 и 21,5 257 и 314 7 и 9,5     28,5 4,2 24,8 628 7     38,1 4,5 25,5 682 8,5     21,2 5,5 38,5 931 7,5     14,4 4,5 31,5 461 9     14,4 4,5 31,5 461 9
Давление на фрикционные накладки, МПа 0,235 0,210 0,224 0,198 0,200 0,233 0,153 0,165 0,167 0,140 0,115
Расчетный коэффициент трения 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,22 0,25 0,25
Передаточные числа: рычагов вилки   4,5 1,69   3,5 1,8   3,5 2,5   2,43 2,45   2,43 2,45   3,79 1,44   4,68 1,68   5,33 2,12   4,85 1,67   4,7 ¸ 5,4 1,86   4,7 ¸ 5,4 1,86
Ход муфты выключения, мм: холостой рабочий 2 ¸ 3 10 4,5 ¸ 5,5 7,1 2 8 2 8 ¸ 9 2 8 ¸ 9 2,5 10 4 11,7 3 ¸ 4 9,6 3,6 16 3,6 15 3,6 16
Масса сцепления (без маховика, картера и механизма привода), кг     4,1     6,1     4,38     5,52     5,55     14,0     20,0     20,5     –     63,8     64,2

 

Примечание:

1число лепестков диафрагменной пружины.

2диаметр приложения нагрузки диафрагменной пружины.

3толщина диафрагменной пружины.

4рабочее усилие на нажимном диске.


                  а)                                                                 б)

Рисунок 1.3 – Схемы приводов сцепления:

а – механический привод; б – гидравлический привод

 

При расчете привода рассчитываются его передаточное число, усилие на педали и ход педали.

Общее передаточное число привода  от педали до нажимного диска можно определить по формуле

,                                          (1.24)

где  – передаточное число педали сцепления;  – передаточное число вилки выключения; – передаточное число рычагов выключения; a, b – плечи педали; c, d – плечи вилки выключения; е, f – плечи рычагов.

Полный ход педали механического привода складывается из свободного хода педали, рабочего хода и упругих деформаций элементов привода. Полный ход педали , мм, механического привода рассчитывается по формуле

,                           (1.25)

где  – свободный ход педали, мм;  – рабочий ход педали, мм; d – зазор в механизме выключения (между муфтой и рычагами выключения), мм; D S – ход нажимного диска, мм.

Величина зазора в механизме выключения [2]:

· сцепления с периферийными цилиндрическими пружинами – d = 1,5 ¸ 2,0 мм;

· сцепления с центральной диафрагменной пружиной – d = 3,5 ¸ 4,0 мм.

Ход нажимного диска [5]:

· однодисковых сцеплений – D S = 1,5 ¸ 2,0 мм;

· двухдисковых сцеплений – D S = 2,4 ¸ 2,8 мм.

Выполненные конструкции приводов имеют обычно следующие значения передаточных чисел:

= 30 ¸ 45; = 3,8 ¸ 5,5; = 1,4 ¸ 2,2 [5].

Передаточное число  гидропривода определяют по формуле

,                                                 (1.26)

где – диаметр главного цилиндра, мм; – диаметр исполнительного цилиндра, мм.

Диаметры главного и исполнительного цилиндров выполняются обычно равными:

1,0.

Полный ход педали сцепления при гидроприводе рассчитывают аналогично (формула (1.25)).

Усилие на педали , Н, определяют по формуле

,                                              (1.27)

где – КПД привода сцепления.

КПД привода сцепления [3]:

· механического привода –  = 0,7 ¸ 0,8;

· гидравлического привода –  = 0,8 ¸ 0,9.

Если усилие на педали больше допустимого, то в привод необходимо устанавливать усилитель.

 

2 Расчет коробки передач

Коробка передач – механизм трансмиссии автомобиля, предназначенный для изменения силы тяги на ведущих колесах путем изменения передаточного числа, длительного отсоединения двигателя от ведущих колес, а также обеспечения движения автомобиля задним ходом.

 

2.1 Определение основных параметров коробки передач

Основные размеры коробки передач  определяют после  выбора ее схемы (рисунок 2.1).

                      а)                                                                      б)

Рисунок 2.1 – Принципиальная кинематическая схема четырехступенчатой коробки передач:

а – двухвальной, б – трехвальной;

1 – ведущий вал, 2 – ведомый вал, 3 – промежуточный вал.

 

В первую очередь оценивается межосевое расстояние.

Межосевое расстояние А, мм, приближенно можно определить по формуле:

,                                                 (2.1)

где а – эмпирический коэффициент.

Величина эмпирического коэффициента зависит от типа транспортного средства [3]:

· для легковых автомобилей – a = 14,5 ¸ 16,0;

· для грузовых автомобилей – a = 17,0 ¸ 19,5;

· для транспортных средств с дизелями – a = 20,5 ¸ 21,5.

Для коробок передач легковых автомобилей:

  А = 65 ¸ 80 мм [5].

Для коробок передач грузовых автомобилей рекомендуется следующий рациональный ряд межосевых расстояний (таблица 2.1) [5].

 

Таблица 2.1 – Рекомендуемые значения параметров коробок передач

, Н·м 170 260 340 ¸ 420 700 ¸ 850 900 ¸ 1150
А, мм 85 105 125 140 160
Число передач 4 5 5 5 10

 

Затем устанавливается нормальный модуль зубчатых колес. Нормальный модуль определяется из условий изгибной прочности на усталость или статической прочности при действии максимального момента.

При выборе модуля необходимо учитывать, что его уменьшение при увеличении ширины зубчатого венца зубчатых колес приводит к уменьшению уровня шума. Для уменьшения массы коробки передач следует увеличивать модуль путем уменьшения ширины венцов (при том же межосевом расстоянии).

Для грузовых автомобилей уменьшение уровня шума имеет меньшее значение, чем для легковых, и следует большее внимание уделять уменьшению массы зубчатых передач.

Нормальный модуль , мм, определяют по формуле:

,                                                     (2.2)

где d – диаметр начальной окружности, мм; b – угол наклона спирали зубьев, град;          Z – число зубьев зубчатого колеса.

Торцевой модуль , мм, рассчитывают по формуле:

.                                                        (2.3)

Как правило, модуль принимается одинаковый для всех зубчатых колес коробки передач, что дает некоторые технологические преимущества. Величина модуля зависит от передаваемого момента и типа транспортного средства (таблица 2.2) [4].

 

Таблица 2.2 – Значения нормального модуля зубчатых колес коробок передач

, Н×м , мм Тип транспортного средства
100 ¸ 200 2,25 ¸ 2,75 Легковые автомобили особо малого и малого класса
200 ¸ 400 2,75 ¸ 3,5 Легковые автомобили среднего класса и грузовые малой грузоподъемности
400 ¸ 600 3,5 ¸ 4,25 Грузовые автомобили средней грузоподъемности

Продолжение табл. 2.2

600 ¸ 800 4,25 ¸ 5,0 Грузовые автомобили большой грузоподъемности
800 ¸ 1000 5,0 ¸ 6,0 Первая передача в коробках передач грузовых автомобилей большой грузоподъемности при малом числе зубьев шестерни (Z=12)

 

Стандартные значения нормального модуля, мм [5]:

 = 1,0; 1.25; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; и т. д.

Большинство зубчатых колес в коробках передач выполняют косозубыми для уменьшения шума при работе и повышения прочности. При выборе угла наклона учитывают ряд факторов: необходимость обеспечения достаточного осевого перекрытия зубьев; ограничение осевой силы, действующей на подшипники валов; необходимость выдержать заданное межосевое расстояние; условие уравновешивания осевых сил на промежуточном валу (для трехвальных коробок передач).

Угол наклона линии зубьев [5]:

· для зубчатых колес двухвальных коробок передач легковых автомобилей –       b = 20 ¸ 25°;

· для зубчатых колес трехвальных коробок передач легковых автомобилей –        b = 22 ¸ 34°;

· для зубчатых колес коробок передач грузовых автомобилей – b = 18 ¸ 26°.

Рабочую ширину венцов зубчатых колес коробки передач b, мм, можно определить из соотношения:

.                                     (2.4)

При определении ширины венцов зубчатых колес следует учитывать, что при применении зубчатых колес большей ширины повышаются требования к жесткости валов коробки передач.

Число зубьев колес определяется по известному передаточному числу коробки передач (при условии равенства модулей).

Так, например, для второй передачи трехвальной четырехступенчатой коробки передач (рисунок 2.1, б):

,                                           (2.5)

где  – передаточное число привода промежуточного вала; – передаточное число зубчатой пары второй передачи.

В обозначении числа зубьев принято следующее: нечетные индексы относятся к ведущим зубчатым колесам, четные – к ведомым. Меньшее из пары зубчатых колес называют шестерней, большее – колесом.

Число зубьев шестерни первичного вала  = 17 ¸ 27 [5], передаточное число привода промежуточного вала  = 1,6 ¸ 2,5 [2].

Задаваясь числом зубьев шестерни первичного вала и передаточным числом привода промежуточного вала, можно определить число зубьев зубчатого колеса привода промежуточного вала.

После этого необходимо проверить межосевое расстояние по числу зубьев:

.                                                (2.6)

При определении числа зубьев необходимо учитывать, что нечетное число суммы зубьев передачи предпочтительнее, так как уменьшается возможность получения суммы чисел зубьев с общим множителем, что приводит к неравномерности износа зубьев.

Путем варьирования углом наклона спирали зубьев в заданных пределах необходимо добиться точного совпадения определяемого межосевого расстояния с вычисленным по формуле (2.1). В крайнем случае можно изменять модуль зубчатых колес.

Передаточное число зубчатой пары , можно определить из формулы (2.5)

.                                                (2.7)



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 385; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.116.159 (0.17 с.)