Качественная характеристика измеряемых величин 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Качественная характеристика измеряемых величин



 

Формализованным отражением качественного различия измеряемых величин является их размерность. Размерность обозначается символом dim, происходящим от слова dimension, которое в зависимости от контекста может переводиться и как размер, и как размерность.

Размерность основных физических величин обозначается соответствующими заглавными буквами. Для длины, массы и времени, например,

 

dim l = L; dim m = M; dim t = T.

При определении размерности производных величин руководствуются следующими правилами:

1. Размерности левой и правой части уравнений не могут не совпадать, так как сравниваться между собой могут только одинаковые свойства. Объединяя левые и правые части уравнений, отсюда можно прийти к выводу, что алгебраически суммироваться могут только величины, имеющие одинаковые размерности.

2. Алгебра размерностей мультипликативна, т.е. состоит из одного единственного действия – умножения.

2.1. Размерность произведения нескольких величин равна произведению их размерностей. Так, если зависимость между значениями величин Q, A, B, C Q = A·B·C, то

dim Q = dim A·dim B·dim C.

 

2.2. Размерность частного при делении одной величины на другую равна отношению их размерностей, т.е., если Q = A/B, то

 

dim Q = dim A/dim B.

 

2.3.Размерность любой величины, возведенной в некоторую степень, равна ее размерности в той же степени. Так, если Q = An, то

 

dim Q = .

 

Например, если скорость определять по формуле v=l/t, то                        dim l/dim t=L/T= LT-1. Если сила по второму закону Ньютона F=ma, где а=v/t – ускорение тела, то dim F= dim m ·dim a = ML/T2 = LMT-2.

Таким образом, всегда можно выразить размерность произведений физической величины через размерности основных физических величин с помощью степенного одночлена:

 

dim Q = LαMβTγ….,

 

где L, M, T… - размерности соответствующих основных физических величин;

α, β, γ – показатели размерности.

Каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, нулем. Если все показатели размерности равны нулю, то такая величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин, и логарифмической, определяемой как логарифм относительной величины.

Итак, размерность является качественной характеристикой измеряемой величины. Формальное применение алгебры размерностей иногда позволяет определить неизвестную зависимость между физическими величинами. Она отражает ее связь с основными величинами и зависит от выбора последних.

Теория размерностей повсеместно применяется для оперативной проверки правильности сложных формул. Если размерности левой и правой частей уравнения не совпадают, т.е. не выполняется правило 1, то в выводе формулы, к какой бы области знаний она не относилась, следует искать ошибку.

 

Количественная характеристика измеряемой величины

Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения. Измерение рассматриваемых свойств объекта оказывается возможным, если удается сформулировать шкалу рассматриваемого свойства с учетом логических отношений, существующих между элементами множества различных проявлений свойства в конкретных объектах, т.е. системы с отношениями. Для построения такой системы с отношениями используется модель объекта измерений, достаточно адекватно описывающая рассматриваемый объект. При отображении системы с отношениями, характеризующей рассматриваемое свойство, на числовую систему с отношениями получается шкала этого свойства. В теории измерений принято различать 5 типов шкал.

Таблица 1

 

Характеристика шкал, используемых в теории измерений

 

Наименование шкал Характеристика
1. Наименований Характеризуется только отношением эквивалентности
2. Порядка (ранговая) эквивалентности и порядка
3. Разностей интервалов Эквивалентности, порядка, разностей (суммирования) интервалов
4. Отношений Эквивалентности, порядка, разностей, суммирования и умножения
5. Абсолютная Эквивалентности, порядка, разностей, суммирования и умножения и определения единицы измерения

 

Шкала наименований – самая простая из всех типов шкал, это только ярлыки для различия и обнаружения изучаемых объектов (например, масло «крестьянское», масло «любительское»).

Шкала порядка (ранговая) соответствует свойствам, для которых имеют смысл не только отношение эквивалентности, но и отношение порядка, по возрастанию или уменьшению количественного проявления свойства.

Ранги – это места, занимаемые в шкале порядка, в старину – звания, чины, в спорте – это места, занятые на соревнованиях. По рангам можно составлять суждения типа «лучше – хуже», «больше - меньше», характерные для контроля. Характерные примеры шкал порядка – существующие шкалы твердости тел. Нам ясно, что сталь тверже резины, но насколько тверже – шкала порядка ответа не дает. В этой шкале тоже нет единиц измерения или мер сравнения.

Шкала разностей интервалов, отличается от шкалы порядка тем, что имеет смысл отношения, эквивалентности, порядка и разностей (суммирования) интервалов между различными количественными проявлениями свойства. Характерный пример – шкала интервалов времени, т.к. интервалы времени можно суммировать (вычитать), но складывать, например, даты каких-либо событий не имеет смысла. Применение шкалы интервалов относится к измерению.

Шкала отношений описывает свойства, к множеству самих количественных проявлений к которым применимы отношения эквивалентности, порядка и суммирования, а, следовательно, вычитания и умножения. В шкале отношений существует также естественный критерий нулевого количественного проявления свойства, т.е. в этой шкале положение нулевой точки строго определено.

Именно так, при фиксировании отсчета, мы измеряем интервалы времени, расстояние, силу, сравнивая результаты с секундой, метром, килограммом и другими единицами физических величин.

Абсолютные шкалы – обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерения. Такие шкалы соответствуют относительным величинам. К таким величинам относятся: коэффициент усиления, добротность колебательной системы, ослабление и т.п. Среди абсолютных шкал выделяются ограниченные абсолютные шкалы, значения которых находятся в пределах от 0 до 1 (это КПД, отражения и т.п.).

По мере развития метрологии наблюдается тенденция рассматривать в качестве объектов измерений все новые и не только физические свойства, но и соответствующие им нефизические величины, поэтому создаются новые и совершенствуются уже известные шкалы.

 

Единицы измерений.



Поделиться:


Последнее изменение этой страницы: 2021-04-05; просмотров: 150; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.189.177 (0.006 с.)