Численное дифференцирование на основе интерполяционной формулы Ньютона 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Численное дифференцирование на основе интерполяционной формулы Ньютона



Запишем для функции f(x), заданной своими значениями в равноотстоящих узлах первый интерполяционный многочлен Ньютона:

Перепишем этот полином, производя перемножение скобок:

Дифференцируя по t, получим аналогично формуле (6.16):

(6.21)

Подобным путем можно получить и производные функции f(x) более высоких порядков. Однако каждый раз, вычисляя значение производной функции f(x) в фиксированной точке х, в качестве х0 следует брать ближайшее слева узловое значение аргумента.

Формула (6.21) существенно упрощается, если исходным значением х оказывается один из узлов таблицы. Так как в этом случае каждый узел можно считать начальным, то принимая х = х0, t=0, получаем:

Эта формула позволяет точно получать значения производных функций, заданных таблично.

Выведем формулу погрешности дифференцирования. Используя формулу (6.17) применительно к первому интерполяционному многочлену Ньютона, запишем:

где ‑ промежуточное значение между и заданной точкой х. Предполагая, что f(x) дифференцируема п +1 раз, получим для оценки погрешности дифференцирования (по аналогии с формулой (6.18)):

Для случая оценки погрешности в узле таблицы получим:

.

На практике оценивать непросто, поэтому при малых h приближенно полагают:

Что позволяет использовать приближенную формулу

Практическая работа №7. «Интерполяционный многочлен Лагранжа»

ТЕМА 8

Приближенное вычисление по формулам прямоугольников, трапеции, Симпсона

Сначала зададимся вопросом, а зачем вообще нужны приближенные вычисления? Вроде бы можно найти первообразную функции и использовать формулу Ньютона-Лейбница, вычислив точное значение определенного интеграла. В качестве ответа на вопрос сразу рассмотрим демонстрационный пример с рисунком.

Вычислить определенный интеграл

Всё было бы хорошо, но в данном примере интеграл не берётся – перед вами неберущийся, так называемый интегральный логарифм.

Существуют несколько основных методов приближенного вычисления определенного интеграла, который встречается в задачах:

Метод прямоугольников. Отрезок интегрирования разбивается на несколько частей и строится ступенчатая фигура, которая по площади близка к искомой площади:

В данном примере проведено разбиение отрезка интегрирования на три отрезка:
. Очевидно, что чем чаще разбиение (больше более мелких промежуточных отрезков), тем выше точность.

Метод трапеций. Идея аналогична. Отрезок интегрирования разбивается на несколько промежуточных отрезков, и график подынтегральной функции приближается ломаной линией:

Метод Симпсона (метод парабол). Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 425; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.100.180 (0.004 с.)