Цитоплазма. Общая морфофункциональная характеристика. Гиалоплазма, ее состав и значение. Классификация органелл. Строение и функция мембранных органелл. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Цитоплазма. Общая морфофункциональная характеристика. Гиалоплазма, ее состав и значение. Классификация органелл. Строение и функция мембранных органелл.



Цитоплазма (cytoplasma), отделенная от окружающей среды плазмолеммой, включает в себя гиалоплазму, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.

Гиалоплазма (от греч. hyalinos — прозрачный), или матрикс цитоплазмы, представляет собой очень важную часть клетки, ее истинную внутреннюю среду.

Гиалоплазма ( цитозоль) - в жидком состоянии золь, в твердом состоянии гель. В ее состав входят раствор минеральных солей, углеводы, белки, аминокислоты, ферменты. Соли натрия образуют в гиалоплазме изотонический раствор (0,9%). Поэтому если клетку поместить в дистил. воду, то она будет набухать, если же ее поместить в гипертонический раствор натрия или в концентрированный раствор глюкозы, то она будет сморщиваться.

В состав гиалоплазмы входят главным образом различные глобулярные белки. Они составляют 20—25 % общего содержания белков в эукариотической клетке. К важнейшим ферментам гиалоплазмы относятся ферменты метаболизма сахаров, азотистых оснований, аминокислот, липидов и других важных соединений. В гиалоплазме располагаются ферменты активации аминокислот при синтезе белков, транспортные (трансферные) РНК (тРНК). В гиалоплазме при участии рибосом и полирибосом (полисом) происходит синтез белков, необходимых для собственно клеточных нужд, для поддержания и обеспечения жизни данной клетки.Осмотические и буферные свойства клетки в значительной степени определяются составом и структурой гиалоплазмы. Важнейшая роль гиалоплазмы заключается в том, что эта полужидкая среда объединяет все клеточные структуры и обеспечивает химическое взаимодействие их друг с другом. Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос аминокислот, жирных кислот, нуклеотидов, сахаров. В гиалоплазме идет постоянный поток ионов к плазматической мембране и от нее к митохондриям, к ядру и вакуолям.

Гиалоплазма является основным вместилищем и зоной перемещения массы молекул АТФ. В гиалоплазме происходит отложение запасных продуктов: гликогена, жировых капель, некоторых пигментов.

Органеллы - Органеллами называют такие микроструктуры цитоплазмы, которые присутствуют практически во всех клетках и выполняют жизненно важные функции. Их делят на два типа.

Мембранные органеллы - отграничены собственной мембраной от окружающей гиалоплазмы. Это - ЭПС, к Гольджи, лизосомы, пероксисомы, митохондрии. Немембранные органеллы – стру туры, не окружённые мембраной. К ним относят рибосомы, клеточный центр, микротрубочки, микрофиламенты, реснички, жгутики, микроворсинки. Также, органеллы подразделяются на органеллы общего значения и специальные органеллы. Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся митохондрии, рибосомы, ЭПС, комплекс Гольджи, лизосомы, пероксисомы, клеточный центр, компоненты цитоскелета. Специальные органеллы имеются лишь в некоторых клетках и обеспечивают выполнение их специализированных функций. К ним относят реснички, жгутики, миофибриллы, акросому (спермиев). Специальные органеллы образуются в ходе развития клетки, как производные органелл общего значения.

 

Эндоплазматическая сеть (ЭПС) - впервые в эндоплазме фибробласта обнаружил Портер, делится на два типа - гранулярную и агранулярную (или гладкую).

Гранулярная ЭПС представляет собой совокупность плоских мешков (цистерн), вакуолей и трубочек, со стороны гиалоплазмы мембранная сеть покрыта рибосомами. В связи с этим, иногда используют другой термин - шероховатый ретикулум. На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем либо выводятся из клетки (экспортные белки), либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).

Функции гранулярной ЭПС:

1) синтез на рибосомах пептидных цепей экспортируемых, мембранных, лизосомных и т.п. белков,

2) изоляция этих белков от гиалоплазмы внутри мембранных полостей и концентрирование их здесь,

3) химическая модификация этих белков, а также связывание их с УВ или др. компонентами

4) их транспорт (внутри ЭПС и с помощью отдельных пузырьков).

Таким образом, наличие в клетке хорошо развитой гранулярной ЭПС свидетельствует о высокой интенсивности белкового синтеза - особенно в отношении секреторных белков.

Гладкая ЭПС в отличие от гранулярной лишена рибосом.

Выполняет функции: синтез углеводов, липидов, стероидных гормонов (поэтому она хорошо выражена в клетках синтезирующих эти гормоны н-р, в коре надпочечников, гонад); дезинтоксикация ядовитых веществ (хорошо выражена в клетках печени, особенно после отравлений), депонирование ионов кальция в цистернах (в скелетной и сердечной мышечной ткани, после высвобождения стимулируют сокращение) и транспорт синтезированных веществ.

 

Комплекс Гольджи (впервые эту органеллу обнаружил КамиллоГольджи в 1898 г в виде

зачерненной серебром сети) - это скопление 5-10 лежащих друг на друге плоских мембранных

цистерн, от которых отшнуровываются мелкие пузырьки. Каждое такое скопление называется

диктиосомой. В клетке может быть много диктиосом, соединённых с ЭПС и друг с другом

цистернами и трубочками. По положению и функции, в диктиосомах различают 2 части:

проксимальная (cis-) часть обращена к ЭПС, противоположная часть называется дистальной

(trans-). При этом к проксимальной части мигрируют пузырьки от гранулярной ЭПС,

обрабатываемые" в диктиосоме белки постепенно перемещаются от проксимальной части к

дистальной и, наконец, от дистальной части отпочковываются секреторные пузырьки и первичные

лизосомы.

Функции комплекса Гольджи:

1) сегрегация (отделение) соответствующих белков от гиалоплазмы и концентрирование их,

2) продолжение химической модификации этих белков, н-р связывание с УВ.

3) сортировка данных белков на лизосомальные, мембранные и экспортные, включение белков в состав соответствующих структур (лизосом, секреторных пузырьков, мембран).

 

Митохондрии - (в конце прошлого века Альтман избирательно окрасил их кислым фуксином) имеют две мембраны - наружную и внутреннюю - из которых вторая образует многочисленные впячивания (кристы) в матрикс митохондрии.

Митохондрии отличаются от прочих органелл ещё двумя интересными особенностями. Они содержат собственную ДНК - от 1 до 50 небольших одинаковых циклических молекул. Кроме того, митохондрии содержат собственные рибосомы, которые по размеру несколько меньше цитоплазматических рибосом и видны как мелкие гранулы. б) Данная система автономного синтеза белков обеспечивает образование примерно 5 % митохондриальных белков. Остальные белки митохондрий кодируются ядром и синтезируются цитоплазматическими рибосомами.

Главная функция митохондрий - завершение окислительного распада питательных веществ и образование за счёт выделяющейся при этом энергии АТФ - временного аккумулятора энергии в клетке.

Наиболее известны 2 процесса.

а) Цикл Кребса - аэробное окисление веществ, конечными продуктами которого являются СО2, выходящий из клетки и НАДН - источник электроноа переносимых дыхательной цепью.

б) Окислительное фосфорилирование - образование АТФ в ходе переноса электронов (и пр тонов) на кислород.

Перенос электронов производится по цепи промежуточных переносчиков (т.н. дыхательной цепи), которая вмонтирована в кристы митохондрий. Здесь же находится и система синтеза АТФ (АТФ-синтетаза, которая сопрягает окисление и фосфорилирование АДФ до АТФ). В результате сопряжения этих процессов, энергия, освобождаемая при окислении субстратов, хранится в макроэргических связях АТФ и в дальнейшем обеспечивает выполнение многочисленных функций клеток (н-р, мышечное сокращение). При заболеваниях в митохондриях происходит разобщение окисления и фосфорилирования, в результате энергия образуется в виде тепла.

в) Другие процессы, проходящие в митохондриях: синтез мочевины, распад жирных кислот и пирувата до ацетил-КоА.

Вариабельность структуры митохондрий. В мышечных волокнах, где потребности в энергии особенно велики, митохондрии содержат большое количество плотно расположенных пластинчатых (ламинарных) крист. В клетках печени количество крист в митохондриях значительно меньше. Наконец, в клетках коры надпочечников кристы имеют тубулярную структуру и выглядят на срезе как мелкие везикулы.

 

Лизосомы ( Дедюв в 1949 г.) - это мембранные пузырьки, содержащие ферменты гидр лиза биополимеров, они образуются, отпочковываясь от цистерн комплекса Гольджи. Размеры - 0,2 0,5 мкм.

Функция лизосом - внутриклеточное переваривание макромолекул. Причём, в лизосомах разрушаются как отдельные макромолекулы (белки, полисахориды и т.д.), так и целые структуры - органеллы, микробные частицы и пр.

Различают 3 типа лизосом, которые представлены на электронограмме.

· Первичные лизосомы - данные лизосомы имеют гомогенное содержимое. Очевидно, это вновь образованные лизосомы с исходным раствором ферментов (около 50 различных гидролитических ферментов). Маркерный фермент - кислая фосфатаза.

· Вторичные лизосомы образуются либо путём слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями, либо путём захвата собственных макромолекул и органелл клетки. Поэтому вторичные лизосомы обычно больше по размеру первичных, а их содержимое часто является неоднородным: например, в нём обнаруживаются плотные тельца. При наличии таковых говорят о фаголизосомах (гетерофагосомах) или аутофагосомах (если данные тельца - фрагменты собственных органелл клетки). При различных повреждениях клетки количество аутофагосом обычно возрастает.

· Телолизосомы или остаточные (резидуальные) тельца, появляются тогда, когда внутрилизосомальное переваривание не приводит к полному разрушению захваченных структур. При этом непереваренные остатки (фрагменты макромолекул, органелл и других частиц) уплотняются, в них часто откладывается пигмент, а сама лизосома во многом теряет свою гидролитическую активность. В неделящихся клетках накопление телолизосом становится важным фактором старения. Так, с возрастом в клетках мозга, печени и в мышечных волокнах накапливаются телолизосомы с т.н. пигментом старения - липофусцином.

Пероксисомы видимо, как и лизосомы, образуются путём отшнуровывания мембранных пузырьков от цистерн комплекса Гольджи. Обнаруживаются в большом количестве в клетках печени. Однако пероксисомы содержат иной набор ферментов. В основном, это оксидазы аминокислот. Они катализируют прямое взаимодействие субстрата с кислородом причём, последний превращается в пероксид водорода, Н2О2 - опасный для клетки окислитель. Поэтому пероксисомы содержат и каталазу - фермент, разрушающий Н2О2 до воды и кислорода. Иногда в пероксисомах обнаруживается кристаллоподобная структура (2) - нуклеоид.



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 527; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.183.1 (0.013 с.)