Тема 1: моль. Эквиваленты и эквивалентные массы простых и сложных веществ. Закон эквивалентов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 1: моль. Эквиваленты и эквивалентные массы простых и сложных веществ. Закон эквивалентов



СОДЕРЖАНИЕ

 

Общие методические указания 4
Программа 8
Контрольные задания 8
Контрольная работа №1 9
Тема 1: Моль. Эквиваленты и эквивалентные массы простых и сложных веществ. Закон эквивалентов 9
Тема 2: Строение атома 13
Тема 3: Периодическая система элементов Д.И. Менделеева 17
Тема 4: Химическая связь и строение молекул. Конденсированное состояние вещества. 20
Тема 5: Энергетика химических процессов (термохимические расчеты) 24
Тема 6: Химическое сродство 30
Тема 7: Химическая кинетика и равновесие 36
Тема 8: Способы выражения концентрации раствора 41
Тема 9: Свойства растворов неэлектролитов и электролитов 44
Тема 10: Ионно‒молекулярные (ионные) реакции обмена  48
Тема 11: Гидролиз солей 51
Контрольная работа № 2 Тема 12: Окислительно‒восстановительные реакции 55 55
Тема 13: Электронные потенциалы и электродвижущие силы 59
Тема 14: Электролиз 64
Тема 15: Коррозия металлов 68
Тема 16: Коллоидные растворы 71
Тема 17: s‒элементы (… ns 1‒2) 75
Тема 18: Жесткость воды и методы ее устранения 77
Тема 19: р ‒ элементы (… ns 2 np 1‒6) 79
Тема 20: Минеральные вяжущие 81
Тема 21: Химия высокомолекулярных соединений 88
Список литературных источников 98
Приложение А. Варианты контрольных заданий 100
Приложение Б. Справочные таблицы 105
   

                                                                                                         


 

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

 

Наука стала производительной силой нашего общества. Без применения достижений науки, и в частности химии, невозможно развитие современной промышленности и сельского хозяйства. Химия, являясь одной из фундаментальных естественнонаучных дисциплин, изучает материальный мир, законы его развития, химическую форму движения материи. В процессе изучения химии формируется диалектико‒материалистическое мировоззрение, вырабатывается научный взгляд на мир в целом. Знание химии необходимо для плодотворной творческой деятельности инженера любой специальности. Изучение химии позволяет получить современное научное представление о материи и формах ее движения, о веществе, как одном из видов движущейся материи, о механизме превращения химических соединений, о свойствах технических материалов и применении химических процессов в современной технике.

Необходимо прочно усвоить основные законы и теории химии, овладеть техникой химических расчетов, выработать навыки самостоятельного выполнения химических экспериментов. Знание химии необходимо для успешного последующего изучения общенаучных и специальных дисциплин.

Основной вид учебных занятий студентов‒заочников — самостоятельная работа над учебным материалом. В курсе химии она слагается из следующих элементов:

· изучение дисциплины по учебникам и учебным пособиям;

· выполнение контрольных заданий;

· выполнение лабораторных работ;

· индивидуальные консультации (очные и дистанционные);

· посещение лекций;

· сдача зачета по лабораторному практикуму;

· сдача экзамена по всему курсу.

р абота с книгой.

Изучать курс рекомендуется по темам, предварительно ознакомившись с содержанием каждой из них по программе. Расположение материала курса в программе не всегда совпадает с расположением его в учебнике. При первом чтении не задерживайтесь на математических выводах, составлении уравнений реакций старайтесь получить общее представление об излагаемых вопросах, а также отмечайте трудные или неясные места. При повторном изучении темы усвойте все теоретические положения, математические зависимости и их выводы, а также принципы составления уравнений реакций. Вникайте в сущность того или иного вопроса, а не пытайтесь запомнить отдельные факты и явления. Изучение любого вопроса на уровне сущности, а не на уровне отдельных явлений способствует более глубокому и прочному усвоению материала.

Чтобы лучше запомнить и усвоить изучаемый материал, надо обязательно иметь рабочую тетрадь и заносить в нее формулировки законов и основных понятий химии, новые незнакомые термины и названия, формулы и уравнения реакций, математические зависимости и их выводы и т.п. Во всех случаях, когда материал поддается систематизации, составляйте графики, схемы, диаграммы, таблицы. Они очень облегчают запоминание и уменьшают объем конспектируемого материала.

Изучая курс, обращайтесь и к предметному указателю в конце книги. Пока тот или иной раздел не усвоен, переходить к изучению новых разделов не следует. Краткий конспект курса будет полезен при повторении материала в период подготовки к экзамену.

Изучение курса должно обязательно сопровождаться выполнением упражнений и решением задач (см. список рекомендованной литературы) Решение задач — один из лучших методов прочного усвоения, проверки и закрепления теоретического материала.

Контрольные задания.

В процессе изучения курса химии студент должен выполнить две контрольные работы. Контрольные работы не должны быть самоцелью: они являются формой методической помощи студентам при изучении курса. К выполнению контрольной работы можно приступить только тогда, когда будет усвоена определенная часть курса и тщательно разобраны решения примеров типовых задач, приведенных в данном пособии по соответствующей теме.

Решения задач и ответы на теоретические вопросы должны быть коротко, но четко обоснованы, за исключением тех случаев, когда по существу вопроса такая мотивировка не требуется, например, когда нужно составить электронную формулу атома, написать уравнение реакции и т.п. При решении задач нужно приводить весь ход решения и математические преобразования.

Контрольная работа должна быть аккуратно оформлена; для замечаний рецензента надо оставлять широкие поля; писать четко и ясно; номера и условия задач переписывать в том порядке, в каком они указаны в задании. В конце работы следует дать список использованной литературы с указанием года издания. Работы должны быть датированы, подписаны студентом и представлены на кафедру «Прикладная химия» (ауд. 1.545) на рецензирование.

Если контрольная работа не зачтена, ее нужно выполнить повторно в соответствии с указаниями рецензента и представить на рецензирование вместе с незачтенной работой. Исправления следует выполнять в конце тетради, а не в рецензированном тексте.

Таблица вариантов контрольных заданий приведена в конце пособия. Контрольная работа, выполненная не по своему варианту, преподавателем не рецензируется и не засчитывается как выполненная.

Лабораторные занятия.

Для глубокого изучения химии как науки, основанной на эксперименте, необходимо выполнить лабораторный практикум. Он развивает у студентов навыки научного экспериментирования, исследовательский подход к изучению предмета, логическое химическое мышление.

В процессе проведения лабораторных занятий студентам прививаются навыки трудолюбия, аккуратности, товарищеской взаимопомощи, ответственности за полученные результаты. Студенты выполняют лабораторный практикум параллельно с изучением курса, в период лабораторно‒экзаменационной сессии.

Консультации.

В случае затруднений при изучении курса следует обращаться за консультацией на кафедру «Прикладная химия» к преподавателю, рецензирующему контрольные работы. Консультации можно получить по вопросам организации самостоятельной работы и по другим организационно‒методическим вопросам

Лекции.

В помощь студентам проводятся лекционные занятия по важнейшим разделам курса, на которых излагаются не все вопросы, представленные в программе, а глубоко и детально рассматриваются принципиальные, но недостаточно полно освещенные в учебной литературе понятия и закономерности, составляющие теоретический фундамент курса химии. На лекциях даются также методические рекомендации для самостоятельного изучения студентами остальной части курса. Студенты, не имеющие возможности посещать лекции одновременно с изучением курса по книге, слушают лекции в период установочных или лабораторно‒экзаменационных сессий, а также могут пользоваться конспектом лекций в электронном варианте и на твердых носителях, которые находятся в информационном отделе ДонНАСА (1 корпус, 2 этаж, читальный зал) и на официальном сайте академии в разделе СДО (система дистанционного образования).

Зачет.

Выполнив лабораторный практикум, студенты сдают зачет. Для сдачи зачета необходимо уметь изложить ход выполнения опытов, объяснить результаты работы и выводы из них, уметь составлять уравнения реакций. Студенты, сдающие зачет, предъявляют контрольные работы, лабораторный журнал с пометкой преподавателя о выполнении всех работ, предусмотренных планом практикума.

Экзамен.

К сдаче экзамена допускаются студенты, которые выполнили 2 контрольных задания и выполнили лабораторные работы. Экзаменатору студенты предъявляют зачетную книжку, направление на экзамен, лабораторный журнал и зачтенные контрольные работы.

 


ПРОГРАММА

Содержание курса и объем требований, предъявляемых студенту при сдаче экзамена, определяет рабочей программой дисциплины «Химия» для различных направлений подготовки, утвержденной Учебно‒методической комиссией факультетов. Настоящая программа курса химии составлена в соответствии с современным уровнем химической науки и требованиями, предъявляемыми к подготовке высококвалифицированных специалистов для подготовки инженеров любой специальности.

 

 

КОНТРОЛЬНЫЕ ЗАДАНИЯ

 

    Каждый студент выполняет вариант контрольных заданий, обозначенный двумя последними цифрами номера зачетной книжки (шифра). Например, номер зачетной книжки м-19/254, две последние цифры 54, им соответствует вариант контрольного задания 54. Выбор варианта контрольного задания выполняется по приложению А (таблица А.1).

    Контрольная работа №1 включает темы теоретического материала с 1 по 11, контрольная работа №2 ‒ с 12 по 21.

 

 

КОНТРОЛЬНАЯ РАБОТА №I

ТЕМА 2: Строение атома

Пример 1. Что такое квантовые числа? Какие значения они могут принимать?

Решение. Движение электрона в атоме носит вероятностный характер. Околоядерное пространство, в котором с наибольшей вероятностью (0,9—0,95) может находиться электрон, называется атомной орбиталью (АО). Атомная орбиталь, как любая геометрическая фигура, характеризуется тремя параметрами (координатами), получившими название квантовых чисел (n,ℓ,m). Квантовые числа принимают не любые, а определенные, дискретные (прерывные) значения. Соседние значения квантовых чисел различаются на единицу. Квантовые числа определяют размер (n), форму () и ориентацию (m1) атомной орбитали в пространстве. Занимая ту или иную атомную орбиталь, электрон образует электронное облако, которое у электронов одного и того же атома может иметь различную форму. Формы электронных облаков аналогичны АО. Их также называют электронными или атомными орбиталями. Электронное облако характеризуется четырьмя квантовыми числами (n, ℓ, m и ms). Эти квантовые числа связаны с физическими свойствами электрона, и число n (главное квантовое число) характеризует энергетический (квантовый) уровень электрона; число (орбитальное) — момент количества движения (энергетический подуровень), число m (магнитное) — магнитный момент, ms — спин. Спин электрона возникает за счет вращения его вокруг собственной оси. Электроны в атоме должны отличаться хотя бы одним квантовым числом (принцип Паули), поэтому в АО могут находиться не более двух электронов, отличающихся своими спинами (ms = ± 1/2).

 

Таблица 1 –  Значения  квантовых чисел и максимальное число электронов на квантовых уровнях и подуровнях

Квантовый

Магнитное квантовое число, ml

 

 

Число квантов‒ых состояний (орбиталей)

Максимальное число электро‒нов

уровень

подуровень

обозна‒чение главное квантовое число, n обозна‒чение орбитальное квантовое число, l в под‒уровне (2 l +1) в уров‒не   n2 в под‒уровне (2 l +1) в уров‒не   n2

K

1

s

0

0

1

1

2

2

L

2

s

0

0

0

4

2

8

 

 

p

1

‒1; 0; +1

3

6

M

3

s

0

0

1

9

2

18

 

 

p

1

‒1; 0; +1;

3

6

 

 

d

2

‒2;‒1; 0; +1; +2

5

10

N

4

s

0

0

1

16

2

32

 

 

p

1

‒1; 0; +1

3

6

 

 

d

2

‒2; ‒1; 0; +1; +2

5

10

 

 

f

3

‒3; ‒2; ‒1; 0; +1;+2; +3;

7

14

 

Пример 2. Составьте электронные формулы атомов элементов с порядковыми номерами 16 и 22. Покажите распределение электронов этих атомов по квантовым (энергетическим) ячейкам.

Решение. Электронные формулы отображают распределение электронов в атоме по энергетическим уровням, подуровням (атомным орбиталям). Электронная конфигурация обозначается группами символов, где n — главное квантовое число, — орбитальное квантовое числов (вместо него указывают соответствующее буквенное обозначение — s, p, d, f), х — число электронов в данном подуровне (орбитали). При этом следует учитывать, что электрон занимает тот энергетический подуровень, на котором он обладает наименьшей энергией — меньшая сумма n + ℓ (правило Клечковского). Последовательность заполнения энергетических уровней и подуровней следующая:

1s→2s→ 2р→ 3s→ 3р→ 4s→ 3d→ 4р→ 5s→ 4d→ 5р→ 6s→ 5d1 →4f→ 5d→ 6р→ 7s →6d1 →5f→ 6d→ 7р

Так как число электронов в атоме того или иного элемента равно его порядковому номеру в таблице Д.И. Менделеева, то для элементов № 16 (сера) и № 22 (титан) электронные формулы имеют вид 16S 1s2 2s2 63s24; 22Ті 1s22s263s263d24s2. Электронная структура  атома может быть изображена также в виде схем размещения электронов в квантовых (энергетических) ячейках, которые являются схематическим изображением атомных орбиталей (АО). Квантовую ячейку обозначают в виде прямоугольника □, кружка О или линейки ─, а электроны в этих ячейках обозначают стрелками ↑↓. В каждой квантовой ячейке может быть не более двух электронов с противоположными спинами. В данном пособии применяют прямоугольники □. Орбитали данного подуровня заполняются сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами (правило Хунда).

 

Контрольные задания согласно варианта из приложения А (таблица А.1)

21. Какие значения могут принимать квантовые числа n, l, ml и ms, характеризующие состояние электронов в атоме? Какие значения они принимают для последнего электрона атома магния?

22. Какие из электронных формул, отражающих строение невозбужденного атома некоторого элемента неверны: а)1s22s253s1 б)1s22s26 в)1s22s263s263d4 г)1s22s263s264s2 д) 1s22s263s23d2. Атомам, каких элементов отвечают правильно составленные электронные формулы?

23. Напишите электронные формулы атомов элементов с порядковыми номерами 24 и 33, учитывая, что у первого происходит "провал" одного 4s‒электрона на Зd‒подуровень. Чему равен максимальный спин d‒электронов у атомов первого и р‒электронов у атомов второго элементов?

24. Квантовые числа для электронов внешнего энергетического уровня атомов некоторого элемента имеют следующие значения: п =4; l=0; m 1 =0; ms= ±1/2. Напишите электронную формулу атома этого элемента и определите, сколько свободных 3d‒орбиталей он содержит.

25. В чем заключается принцип Паули? Может ли быть на каком‒нибудь подуровне атома р7‒ или d12‒электронов? Почему? Составьте электронную формулу атома элемента с порядковым номером 22 и укажите его валентные электроны.

26. Составьте электронные формулы атомов, элементов с порядковыми номерами 32 и 42, учитывая, что у последнего происходит "провал" одного 5s‒электрона на 4d‒подуровень. К какому электронному семейству относится каждый из этих элементов?

27. Составьте электронные формулы атомов, элементов с порядковыми номерами 12 и 38. Какими четырьмя квантовыми числами можно описать последний электрон?

28. Составьте электронные формулы атомов, элементов с порядковыми номерами 17 и 53. Какими четырьмя квантовыми числами можно описать последний электрон?

29. Составьте электронные формулы атомов, элементов с порядковыми номерами 11 и 37. Какими четырьмя квантовыми числами можно описать последний электрон?

30. Каким элементам соответствуют следующие электронные формулы:

а) 1s22s263s264s2; б) 1s22s263s22? Распределите электроны по квантовым ячейкам. К каким электронным семействам они относятся?

31. Напишите электронные формулы атомов элементов с порядковыми номерами 9 и 28. Покажите распределение электронов этих атомов по квантовым ячейкам. К какому электронному семейству относится каждый из этих элементов?

32. Напишите электронные формулы атомов элементов с порядковыми номерами 16 и 26. Распределите электроны этих атомов по квантовым ячейкам. К какому электронному семейству относится каждый из этих элементов?

33. Какое максимальное число электронов могут занимать s‒, р‒, d‒ и f‒орбитали данного энергетического уровня? Почему? Напишите электронную формулу атома элемента с порядковым номером 31.

34. Напишите электронные формулы атомов элементов с порядковыми номерами 25 и 34. К какому электронному семейству относится каждый из этих элементов?

35. Какие орбитали атома заполняются электронами раньше: 4s или 3d; 5s или 4р. Почему? Напишите электронную формулу атома элемента с порядковым номером 21.

36. Какие орбитали атома заполняются электронами раньше: 4d или 5s; 6s или 5р? Почему? Напишите электронную формулу атома элемента с порядковым номером 43.

37. Напишите электронные формулы атомов элементов с порядковыми номерами 14 и 40. Сколько свободных d‒орбиталей у атомов последнего элемента?

38. Напишите электронные формулы атомов элементов с порядковыми номерами 15 и 28. Чему равен максимальный спин р‒электронов у атомов первого и d‒электронов у атомов второго элемента?

39. Напишите электронные формулы атомов элементов с порядковыми номерами 21 и 23. Сколько свободных d‒орбиталей в атомах этих элементов?

40. Сколько и какие значения может принимать магнитное квантовое число ml при орбитальном числе L = 0, 1, 2 и 3? Какие элементы в периодической системе называют s‒, р‒, d‒ и f‒элементами? Приведите примеры.

 

 

Таблица 2 – Степени окисления мышьяка, селена, брома

 

Элемент

 

Степень окисления

 

Соединения

Высшая Низшая
As +5 -3 H3AsO4; H3As
Se +6 -2 SeO3; Na2Se
Br +7 -1 KBrO4; KBr

 

Пример 2. У какого из элементов четвертого периода — марганца или брома — сильнее выражены металлические свойства?

Решение. Электронные формулы данных элементов

25Mn 1s22s22p63s23p63d54s2

 

35Br   1s22s22p63s23p63d104s24p5

 

Марганец — d‒элемент VIIB‒группы, а бром — р‒элемент VIIA‒группы. На внешнем энергетическом уровне у атома марганца два электрона, а у атома брома — семь. Атомы типичных металлов характеризуются наличием небольшого числа электронов на внешнем энергетическом уровне, и, следовательно, тенденцией терять эти электроны. Они обладают только восстановительными свойствами и не образуют элементарных отрицательных ионов. Элементы, атомы которых на внешнем энергетическом уровне содержат более трех электронов, обладают определенным сродством к электрону, а, следовательно, приобретают отрицательную степень окисления и даже образуют элементарные отрицательные ионы. Таким образом, марганец, как и все металлы, обладает только восстановительными свойствами, тогда как для брома, проявляющего слабые восстановительные свойства, более свойственны окислительные функции. Общей закономерностью для всех групп, содержащих р‒ и d‒элементы, является преобладание металлических свойств у d‒элементов. Следовательно, металлические свойства у марганца сильнее выражены, чем у брома.

Пример 3. Как зависят кислотно‒основные свойства оксидов и гидроксидов от степени окисления атомов элементов, их образующих? Какие гидроксиды называются амфотерными?

Решение. Если данный элемент проявляет переменную степень окисления и образует несколько оксидов и гидроксидов, то с увеличением степени окисления свойства последних меняются от основных к амфотерным и кислотным. Это объясняется характером электролитической диссоциации (ионизации) гидроксидов МеОН, которая в зависимости от сравнительной прочности и полярности связей Ме — О и О — Н может протекать по двум типам:

 

МеОН ↔ Меn++nОН (1)   МеОН ↔ МеО(II)

 

Полярность связей, в свою очередь, определяется разностью электроотрицательностей компонентов, размерами и эффективными зарядами атомов. Диссоциация по кислотному типу (II) протекает, если Эон < ЭЭО (высокая степень окисления), а по основному типу (1), если Эон > Ээо (низкая степень окисления); Если прочности связей О—Н и Э—О близки или равны, диссоциация гидроксида может одновременно протекать и по (I), и по (II) типам. В этом случае речь идет об амфотерных электролитах.

Эn++nОН↔ Э(ОН)n ↔ HnЭОn ↔ nH++ЭОnn+

                                      как основание        как кислота

 

 Э‒элемент, n‒его положительная степень окисления В кислой среде амфолит проявляет основной характер, а в щелочной среде ‒ кислый характер.

 

Контрольные задания согласно варианта из приложения А (таблица А.1)

41. У какого из р‒элементов пятой группы периодической системы — фосфора или сурьмы — сильнее выражены неметаллические свойства? Какое из водородных соединений данных элементов более сильный восстановитель? Ответ мотивируйте строением атома этих элементов.

42. Исходя из положения металла в периодической системе, дайте мотивированный ответ на вопрос: какой из двух гидроксидов более сильное основание: Ва (ОН)2 или Mg(OH)2, Ca(OH)2 или Fe(OH)2, Са(OH)2 или Sr(OH)2?

43. Исходя из степени окисления атомов соответствующих элементов, дайте мотивированный ответ на вопрос: какой из двух гидроксидов является более сильным основанием: Cu(OH) или Си(ОН)2; Fe(OH)2 или Fe(OH)3; Sn(OH)2 или Sn(OH)4? Напишите уравнения реакций, доказывающих амфотерность гидроксида олова (II).

44. Какую низшую степень окисления проявляют водород, фтор, сера и азот? Почему? Составьте формулы соединений кальция с данными элементами в этой их степени окисления. Как называются соответствующие соединения?

45. Какую низшую и высшую степени окисления проявляют кремний, мышьяк, селен и хлор? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.

46. Хром образует соединения, в которых он проявляет степени окисления +2, +3, +6. Составьте формулы его оксидов и гидроксидов, отвечающих этим степеням окисления. Напишите уравнения реакций, доказывающих амфотерность гидроксида хрома (III).

47. Атомные массы элементов в периодической системе непрерывно увеличиваются, тогда, как свойства простых тел изменяются периодически. Чем это можно объяснить? Дайте мотивированный ответ.

48. Какова современная формулировка периодического закона? Объясните, почему в периодической системе элементов аргон, кобальт, теллур и торий помещены соответственно перед калием, никелем, йодом и протактинием, хотя и имеют большую атомную массу?

49. Какую низшую и высшую степени окисления проявляют углерод, фосфор, сера и йод? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.

50. Атомы каких элементов четвертого периода периодической системы образуют оксид, отвечающий их высшей степени окисления Э2О5? Какой из них дает газообразное соединение с водородом? Составьте формулы кислот, отвечающих этим оксидам, и изобразите их графически?

51. Исходя из положения германия и технеция в периодической системе, составьте формулы мета‒, ортогерманиевой кислот и оксида технеция, отвечающие их высшей степени окисления. Изобразите формулы этих соединений графически.

52. Что такое энергия ионизации? В каких единицах она выражается? Как изменяется восстановительная активность s‒ и р‒элементов в группах периодической системы с увеличением порядкового номера? Почему?

53. Что такое электроотрицательность? Как изменяется электроотрицательность р‒элементов в периоде, в группе периодической системы с увеличением порядкового номера? Почему?

54. Исходя из положения германия, молибдена и рения в периодической системе, составьте формулы водородного соединения германия, оксида молибдена и рениевой кислоты, отвечающие их высшей степени окисления. Изобразите формулы этих соединений графически.

55. Что такое сродство к электрону? В каких единицах оно выражается? Как изменяется окислительная активность неметаллов в периоде и в группе периодической системы с увеличением порядкового номера? Ответ мотивируйте строением атома соответствующего элемента.

56. Составьте формулы оксидов и гидроксидов элементов третьего периода периодической системы, отвечающих их высшей степени окисления. Как изменяется кислотно‒основной характер этих соединений при переходе от натрия к хлору? Напишите уравнения реакций, доказывающих амфотерность гидроксида алюминия.

57. Какой из элементов четвертого периода — ванадий или мышьяк — обладает более выраженными металлическими свойствами? Какой из этих элементов образует газообразное соединение с водородом? Ответ мотивируйте, исходя из строения атомов этих элементов.

58. Марганец образует соединения, в которых он проявляет степень окисления +2, +3 +4; +6, +7. Составьте формулы его оксидов и гидроксидов, отвечающих этим степеням окисления. Напишите уравнения реакций, доказывающих амфотерность гидроксида марганца (IV).

59. У какого элемента четвертого периода — хрома или селена — сильнее выражены металлические свойства? Какой из этих элементов образует газообразное соединение с водородом? Ответ мотивируйте строением атомов хрома и селена

60. Какую низшую степень окисления проявляют хлор, сера, азот и углерод? Почему? Составьте формулы соединений алюминия с данными элементами в этой степени окисления. Как называются соответствующие соединения?

 

ТЕМА 6: Химическое сродство

 

При решении задач этого раздела данные для расчетов необходимо взять в таблице этого раздела и в справочнике физико‒химических величин.

Самопроизвольно могут протекать реакции, сопровождающиеся не только выделением, но и поглощением теплоты.

Реакция, идущая при данной температуре с выделением теплоты, при другой температуре проходит с поглощением теплоты. Здесь проявляется диалектический закон единства и борьбы противоположностей. С одной стороны, система стремится к упорядочению (агрегации), к уменьшению энтальпии Н; с другой стороны, система стремится к беспорядку (дезагрегации). Первая тенденция растет с понижением температуры, а вторая — с повышением температуры. Тенденцию к беспорядку характеризует величина, которую называют энтропией.

    Энтропия S, так же как внутренняя энергия U, энтальпия Н, объем V и др., является свойством вещества, пропорциональным его количеству. Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы. Она возрастает с увеличением движения частиц: при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядо‒ченностью системы (конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т.п.), ведут к уменьшению энтропии.

Энтропия является функцией состояния, т.е. ее изменение (ΔS) зависит только от начального (S1) и конечного (S2) состояния и не зависит от пути процесса 

 

ΔSх.р.=ΣS  прод –ΣS  исх

 

ΔS=S2 –S1   

 

 Если S2>S1, то ΔS>0. Если S2<S1, то ΔS<0.

 

Так как энтропия растет с повышением температуры, то можно считать, что мера беспорядка ≈ТΔS. Энтропия выражается в Дж⁄ (моль  К). Таким образом, движущая сила процесса складывается из двух сил: стремления к упорядочению (ΔН) и стремления к беспорядку (ТΔS). При р = соnst и T = const общую движущую силу процесса, которую обозначают ΔG, можно найти из соотношения

 

ΔG = (Н2 – Н1) – (ТS2 – TS1);                       ΔG = ΔН – ТΔS

 

 Величина G называется изобарно‒изотермическим потенциалом или энергией Гиббса. Итак, мерой химического сродства является убыль энергии Гиббса (ΔG), которая зависит от природы вещества, его количества и от температуры. Энергия Гиббса является функцией состояния, поэтому

 

ΔGх.р. = Σ ΔG прод. ‒ Σ ΔG исх.

 

Самопроизвольно протекающие процессы идут в сторону уменьшения потенциала и, в частности, в сторону уменьшения ΔG. Если ΔG < 0, процесс принципиально осуществим; если ΔG > О, процесс самопроизвольно проходить не может. Чем меньше ΔG, тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия, при котором ΔG =0 и ΔН = TΔS.

 

Из соотношения ΔG = ΔН ‒ TΔS видно, что самопроизвольно могут протекать и процессы, для которых ΔН > 0 (эндотермические). Это возможно, когда ΔS > 0, но |TΔS| > |ΔН|, и тогда ΔG < 0. С другой стороны, экзотермические реакции (ΔG< 0) самопроизвольно не протекают, если при ΔS < 0 окажется, что ΔG > 0.

 

Таблица 5 –  Стандартная энергия Гиббса образования ΔG 298 некоторых веществ

Вещество Состояние ΔG  298, кДж/моль Вещество Состояние ΔG 298, кДж/моль
ВаСО3 к ‒1138,8 FeO к ‒244,3
СаСО3 к ‒1128,75 Н2О ж ‒237,19
Fe3O4 к ‒1014,2 Н2О г ‒228,59
ВеСО3 к ‒944,75 PbO2 к ‒219,0
СаО к ‒604,2 СО г ‒137,27
ВеО к ‒581,61 СН4 г ‒50,79
ВаО к ‒528,4 NO2 г +51,84
СО2 г ‒394,38 NO г +86,69
NaCl к ‒384,03 С2Н2 г +209,20
ZnO к ‒318,2 NaF   ‒ 585,59

 

Пример 1. В каком состоянии энтропия 1 моль вещества больше: в кристаллическом или в парообразном состоянии при той же температуре?

Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше, чем объем 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно‒молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе

 

СН4 (г) + СО2 (г) ↔ 2СО (г) + 2Н2 (г)

 

Решение. Для ответа на вопрос следует вычислить ΔG 298 прямой реакции. Значения ΔG 298  соответствующих веществ приведены в табл. 5. Зная, что ΔG есть функция состояния и что ΔG для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим ΔG 298 процесса:

 

ΔG 298  = 2 · (‒137,27) + 2 · (0) – (‒50,79 – 394,38) = +170,63 кДж

 

То, что ΔG0298 > 0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 2980К и равенстве давлений взятых газов 1,013∙105 Па (760 мм рт. ст. = 1 атм).

 

 

Таблица 6 –  Стандартные абсолютные энтропии S 298 некоторых веществ



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 68; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.15.149 (0.202 с.)