Возможные исходы лечения ОРДС 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Возможные исходы лечения ОРДС



Госпитальная летальность у пациентов с ОРДС во мно- гом зависит от основного заболевания и составляет для ОРДС легкой степени 25—35%, для среднетяжелого ОРДС 40—50% и для тяжелого ОРДС 46—60% [24,372—375].

В течение от полугода до 2-х лет после выписки из ОРИТ у пациента, перенесшего ОРДС, нарушены другие функции (мышечная сила, физическая активность) [376]. По сравне- нию с бывшими пациентами хирургических ОРИТ без ОРДС стандартная реабилитационная терапия в течение раннего восстановительного периода после критического состояния не показывает значимых улучшений физической выносли- вости и силы. Более того, часть пациентов также страдает от депрессии (26—33%), тревоги (38—44%) или посттравма-


тического расстройства психики (22—24%). В целом уровень физической активности и функциональной автономности после перенесенного ОРДС снижен по сравнению с пациен- тами, перенесшими критическое состояние без ОРДС. Об- щее качество жизни у пациентов, перенесших ОРДС, зна- чительно снижено по сравнению с похожими пациентами, не перенесшими ОРДС [376]. Около 50% пациентов, пе- ренесших ОРДС, могут вести нормальный или почти нор- мальный образ жизни [377—380].

У больных с ОРДС механика внешнего дыхания возвра- щается к норме в течение 1 года после выписки из клиники. Снижение диффузионной способности, увеличение мерт- вого пространства при физических нагрузках, а также ле- гочная гипертензия могут сохраняться длительно [379, 380].

Условия оказания медицинской помощи

Медицинская помощь, регламентируемая данным про- токолом, осуществляется в условиях стационара. Профиль — анестезиолого-реанимационный. Функциональное назна- чение медицинской помощи — лечебно-диагностическая.

Кодирование по номенклатуре медицинских услуг

Кодирование по номенклатуре медицинских услуг, согласно приказа Министерства здравоохранения РФ от 13.10.17 №804н «Об утверждении номенклатуры меди- цинских услуг».


 


ЛИТЕРАТУРА/REFERENCES

1. Ware LB, Matthay MA. The Acute Respiratory Distress Syndrome. N Engl J Med Massachusetts Medical Society. 2000;342(18):1334-1349.

2. Hudson LD, Milberg JA, Anardi D, et al. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(2 I):293-301.


 

 

3. Fowler AA, Hamman RF, Good JT, et al. Adult respiratory distress syn- drome: Risk with common predispositions. Ann Intern Med. 1983;98(5):593-597.

4. Pepe PE, Potkin RT, Reus DH, et al. Clinical predictors of the adult respi- ratory distress syndrome. Am J Surg. 1982;144(1):124-130.


 


5. Острый респираторный дистресс-синдром. Практическое руководство. Под ред.: Гельфанд Б.Р., Кассиль В.Л. М.: Литтерра; 2007.

6. Власенко А.В., Голубев А.М., Мороз В.Н. и др. Патогенез и диффе- ренциальная диагностика острого респираторного дистресс-синдро- ма, обусловленного прямыми и непрямыми этиологическими факто- рами. Общая реаниматология. 2011;VIII(3):5-13.

7. Gattinoni L, Pelosi P, Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: Different syndromes? Am J Respir Crit Care Med. 1998;158(1):3-11.

8. Moss M, Guidot DM, Duhon GF, et al. Diabetic patients have a decreased incidence of acute respiratory distress syndrome [Internet]. Crit Care Med Lippincott Williams and Wilkins. 2000;2187-2192.

9. Frank JA, Nuckton TJ, Matthay MA. Diabetes mellitus: A negative predic- tor for the development of acute respiratory distress syndrome from septic shock [Internet]. Crit Care Med Lippincott Williams and Wilkins. 2000;2645- 2646.

10. Moss M, Parsons PE, Steinberg KP, et al. Chronic alcohol abuse is associ- ated with an increased incidence of acute respiratory distress syndrome and severity of multiple organ dysfunction in patients with septic shock. Crit Care Med. 2003;31(3):869-877.

11. Boyle AJ, Madotto F, Laffey JG, et al. Identifying associations between di- abetes and acute respiratory distress syndrome in patients with acute hypox- emic respiratory failure: an analysis of the LUNG SAFE database. Crit Care BioMed Central Ltd. 2018;22(1).

12. Грицан А.И., Колесниченко А.П., Ишутин В.В. и др. Опыт проведе- ния респираторной поддержки у беременных женщин с вирусно-бактери- альными пневмониями, осложненными ОРДС. Научные тезисы XII съез- да Федерации анестезиологов и реаниматологов. Москва, 19—22 сен- тября 2010 г. М. 2010.

13. Michard F, Fernandez-Mondejar E, Kirov MY, et al. A new and simple def- inition for acute lung injury [Internet]. Crit Care Med. 2012;1004-1006.

14. Malbrain MLNG, Chiumello D, Pelosi P, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;33(2):315-322.

15. Mutoh T, Lamm WJ, Embree LJ, et al. Volume infusion produces abdomi- nal distension, lung compression, and chest wall stiffening in pigs. J Appl Physiol. 1992;72(2):575-582.

16. Malbrain MLNGNG, Chiumello D, Pelosi P, et al. Prevalence of intra-ab- dominal hypertension in critically ill patients: A multicentre epidemiologi- cal study. Intensive Care Med. 2004;30(5):822-829.

17. Гайгольник Д.В., Беляев К.Ю., Грицан Е.А. и др. Биомеханика и га- зообмен в процессе респираторной поддержки у пациентов с некро- тическим панкреатитом в зависимости от исходов лечения. Вестник интенсивной терапии. 2019;1:65-77.

18. Behazin N, Jones SB, Cohen RI, et al. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol. 2010;108(1):212-218.

19. Ярошецкий А.И., Проценко Д.Н., Резепов Н.А. и др. Настройка по- ложительного давления конца выдоха при паренхиматозной ОДН: Статическая петля «давление-объем» или транспульмональное давле- ние? Анестезиология и реаниматология. 2014;4:53-59.

20. Fumagalli J, Santiago RRS, Teggia Droghi M, et al. Lung Recruitment in Obese Patients with Acute Respiratory Distress Syndrome. Anesthesiology Lippincott Williams and Wilkins. 2019;130(5):791-803.

21. Garber BG, Hébert PC, Yelle JD, et al. Adult respiratory distress syndrome: a systemic overview of incidence and risk factors. Crit Care Med. 1996;24(4):687-695.

22. Luhr OR, Antonsen K, Karlsson M, et al. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Den- mark, and Iceland. Am J Respir Crit Care Med. American Lung Association. 1999;159(6):1849-1861.

23. Roupie E, Lepage E, Wysocki M, et al. Prevalence, etiologies and outcome of the acute respiratory distress syndrome among hypoxemic ventilated pa- tients. SRLF Collaborative Group on Mechanical Ventilation. Société de Réanimation de Langue Française. Intensive Care Med. 1999;25(9):920-929.

24. Gattinoni L, Haren F, Van, Larsson A, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in In- tensive Care Units in 50 Countries. Jama. 2016;315(8):788.

25. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and Outcomes of Acute Lung Injury. N Engl J Med. 2005;353(16):1685-1693.

26. Madotto F, Pham T, Bellani G, et al. Resolved versus confirmed ARDS af- ter 24 h: insights from the LUNG SAFE study. Intensive Care Med Springer. 2018;44(5):564-577.

27. Кассиль В.Л., Выжигина М.А., Лескин Г.С. Искусственная и вспомо- гательная вентиляция легких. СПб.: Медицина; 2004.


28. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA — J Am Med Assoc. 2012;307(23):2526-2533.

29. Fein AM, Lippmann M, Holtzman H, et al. The risk factors, incidence, and prognosis of ARDS following septicemia. Chest. 1983;83(1):40-42.

30. Iscimen R, Cartin-Ceba R, Yilmaz M, et al. Risk factors for the development of acute lung injury in patients with septic shock: An observational cohort study. Crit Care Med Lippincott Williams and Wilkins. 2008;36(5):1518-1522.

31. Sheu CC, Gong MN, Zhai R, et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest American College of Chest Physicians. 2010;138(3):559-567.

32. Cortegiani A, Madotto F, Gregoretti C, et al. Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database. Crit Care BioMed Central Ltd. 2018;22(1):157.

33. Murphy CV, Schramm GE, Doherty JA,et al. The importance of fluid man- agement in acute lung injury secondary to septic shock. Chest American Col- lege of Chest Physicians. 2009;136(1):102-109.

34. Gajic O, Dara SI, Mendez JL, et al. Ventilator-associated lung injury in pa- tients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32(9):1817-1824.

35. Esteban A, Fernández-Segoviano P, Frutos-Vivar F, et al. Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy find- ings. Ann Intern Med American College of Physicians. 2004;141(6):440-445.

36. Ferguson ND, Frutos-Vivar F, Esteban A, et al. Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med. 2005;33(10):2228-2234.

37. Ярошецкий А.И., Проценко Д.Н., Ларин Е.С. и др. Роль оценки ста- тической петли «давление-объем» в дифференциальной диагностике и оптимизации параметров респираторной поддержки при паренхи- матозной дыхательной недостаточности. Анестезиология и реанимато- логия. 2014;(2):21-26.

38. Dreyfuss D, Saumon G. Ventilator-induced lung injury: Lessons from ex- perimental studies. Am J Respir Crit Care Med. 1998;157(1):294-323.

39. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by pos- itive end expiratory pressure. AMERREVRESPDIS. 1974;110(5):556-565.

40. Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary ede- ma. Respective effects of high airway pressure, high tidal volume, and posi- tive end-expiratory pressure. Am Rev Respir Dis. 1988;137(5):1159-1164.

41. Caironi P, Cressoni M, Chiumello D, et al. Lung Opening and Closing dur- ing Ventilation of Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2010;181(6):578-586.

42. D’Alonzo GE, Dantzker DR. Respiratory failure, mechanisms of abnormal gas exchange, and oxygen delivery. Med Clin North Am. 1983;67(3):557-571.

43. Ganapathy A, Adhikari NKJ, Spiegelman J, et al. Routine chest x-rays in intensive care units: a systematic review and meta-analysis. Crit Care. 2012;16(2):68.

44. Gattinoni L, Caironi P, Pelosi P, et al. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164(9):1701-1711.

45. Malbouisson LM, Muller JC, Constantin JM, et al. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(6):1444-1450.

46. Papazian L, Calfee CS, Chiumello D, et al. Diagnostic workup for ARDS patients. Intensive Care Med. 2016.

47. Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care.

2017.

48. Gattinoni L, Pesenti A. The concept of «baby lung». Intensive Care Med.

2005;31(6):776-784.

49. Brunet F, Jeanbourquin D, Monchi M, et al. Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan? Am J Respir Crit Care Med. 1995;152(2):524-530.

50. Chiumello D, Marino A, Brioni M, et al. Lung Recruitment Assessed by Re- spiratory Mechanics and by CT Scan: What is the Relationship? Am J Respir Crit Care Med. 2015;1-67.

51. Goodman LR, Fumagalli R, Tagliabue P, et al. Adult Respiratory Distress Syndrome Due to Pulmonary and Extrapulmonary Causes: CT, Clinical, and Functional Correlations1. Radiology. 1999;213(2):545-552.

52. Bellani G, Mauri T, Pesenti A. Imaging in acute lung injury and acute respi- ratory distress syndrome. Curr Opin Crit Care. 2012;18(1):29-34.

53. Кузовлев А.Н., Мороз В.В., Голубев А.М. Диагностика острого респи- раторного дистресс-синдрома при нозокомиальной пневмонии. Об- щая реаниматология. 2009;6:5-12.


 


54. Cressoni M, Cadringher P, Chiurazzi C, et al. Lung Inhomogeneity in Pa- tients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2013;189(2).

55. Henne E, Anderson JC, Lowe N, et al. Comparison of human lung tissue mass measurements from ex vivo lungs and high resolution CT software anal- ysis. BMC Pulm Med BioMed Central. 2012;12:18.

56. Hall JE. Guyton and Hall Textbook of medical physiology. 13th ed. Elsevier. 2015.

57. Barcroft J, Camis M. The dissociation curve of blood. J Physiol Wiley-Black- well. 1909;39(2):118-142.

58. Rice TW, Wheeler AP, Bernard GR, et al. Comparison of the SpO2/FIO2 ratio and the PaO 2/FIO2 ratio in patients with acute lung injury or ARDS. Chest American College of Chest Physicians. 2007;132(2):410-417.

59. Ashbaugh D, Boyd Bigelow D, Petty T, et al. Acute respiratory distress in adults. Lancet Elsevier. 1967;290(7511):319-323.

60. Murray JF, Matthay MA, Luce JM, et al. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138(3):720-723.

61. Bernard GR, Artigas A, Brigham KL, et al. The American-European Con- sensus Conference on ARDS: Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med American Thorac- ic Society. 1994;818-824.

62. Thille AW, Esteban A, Fernández-Segoviano P, et al. Comparison of the ber- lin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;187(7):761-767.

63. Guerin C, Bayle F, Leray V, et al. Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Med Springer Verlag. 2015;41(2):222-230.

64. Ferguson ND, Davis AM, Slutsky AS, et al. Development of a clinical def- inition for acute respiratory distress syndrome using the Delphi technique. J Crit Care. 2005;20(2):147-154.

65. Pelosi P, D’Onofrio D, Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl. 2003;42:48-56.

66. Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med Massachusetts Medi- cal Society. 2015;372(8):747-755.

67. Moss M, Goodman PL, Heinig M, et al. Establishing the relative accuracy of three new definitions of the adult respiratory distress syndrome [Internet]. Crit Care Med. 1995;1629-1637.

68. Gattinoni L, Carlesso E, Cressoni M. Selecting the ‘right’ positive end-ex- piratory pressure level. Curr Opin Crit Care. 2015;21(1):50-57.

69. Chiumello D, Cressoni M, Carlesso E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory dis- tress syndrome. Crit Care Med. 2014;42(2):252-264.

70. Kuzkov VV, Kirov MY, Sovershaev MA,et al. Extravascular lung water deter- mined with single transpulmonary thermodilution correlates with the sever- ity of sepsis-induced acute lung injury. Crit Care Med. 2006;34(6):1647-1653.

71. Кузьков В.В., Сметкин А.А., Суборов Е.В. и др. Внесосудистая вода легких и рекрутмент альвеол у пациентов с острым респираторным дистресс-синдромом. Вестник анестезиологии и реаниматологии. 2012;9(2):15-21.

72. Blankman P, Shono A, Hermans BJM, et al. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac- surgery patients. Br J Anaesth. 2016;116(6).

73. Talmor D, Sarge T, O’Donnell CR, et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med. 2006;34(5):1389-1394.

74. Vieira SRR, Puybasset L, Lu Q, et al. A scanographic assessment of pulmo- nary morphology in acute lung injury: Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med. 1999;159(5 I):1612-1623.

75. Loring SH, O’Donnell CR, Behazin N, et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpul- monary pressure, chest wall mechanics, and lung stress? J Appl Physiol. 2010;108(3):515-522.

76. Silva PL, Pelosi P, Rocco PRM. Optimal mechanical ventilation strategies to minimize ventilator-induced lung injury in non-injured and injured lungs. Expert Rev Respir Med. 2016;10(12):1-3.

77. West JB, Luks A. West’s respiratory physiology: the essentials. 10th ed. Lippin- cott Williams & Wilkins. 2016.

78. Gulati G, Novero A, Loring SH, et al. Pleural pressure and optimal positive end-expiratory pressure based on esophageal pressure versus chest wall elas- tance: incompatible results*. Crit Care Med. 2013;41(8):1951-1957.


79. Gattinoni L, Vagginelli F, Chiumello D, et al. Physiologic rationale for ven- tilator setting in acute lung injury/acute respiratory distress syndrome pa- tients. Crit Care Med. 2003;31(4 suppl):300-304.

80. Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of Titrating Posi- tive End-Expiratory Pressure (PEEP) with an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-F io 2 Strategy on Death and Days Free from Mechanical Ventilation among Patients with Acute Respiratory Dis- tress Syndrome: A Randomized Clinical Trial. JAMA — J Am Med Assoc. American Medical Association. 2019;846-857.

81. Ярошецкий А.И., Проценко Д.Н., Бойцов П.В. и др. Оптимальное по- ложительное конечно-экспираторное давление при ОРДС у больных гриппом а(H1N1)pdm09: баланс между максимумом конечно-экспи- раторного объема и минимумом перераздувания альвеол. Анестезио- логия и реаниматология. 2016;61(6):425-432.

82. Thille AW, Richard J-CM, Maggiore SM, et al. Alveolar Recruitment in Pul- monary and Extrapulmonary Acute Respiratory Distress SyndromeCom- parison Using Pressure-Volume Curve or Static Compliance. J Am Soc An- esthesiol. The American Society of Anesthesiologists. 2007;106(2):212-217.

83. Ярошецкий А.И. Респираторная поддержка при гипоксемической острой дыхательной недостаточности: стратегия и тактика на основе оценки биомеханики дыхания: Дис. д-ра мед. наук. М. 2019.

84. Кузьков В.В., Киров М.Ю., Вэрхауг К. и др. Оценка современных ме- тодов измерения внесосудистой воды легких и аэрации при негомо- генном повреждении легких (экспериментальное исследование). Ане- стезиология и реаниматология. 2007;3:42-45.

85. Zhang JC, Chu YF, Zeng J, et al. Effect of continuous high-volume hemo- filtration in patients with severe acute respiratory distress syndrome. Chinese Crit Care Med. 2013;25(3):145-148.

86. Bein T, Grasso S, Moerer O, et al. The standard of care of patients with AR- DS: ventilatory settings and rescue therapies for refractory hypoxemia. In- tensive Care Med. 2016;42(5):699-711.

87. Xie J, Yang J. Effect of continuous high-volume hemofiltration on patients with acute respiratory distress syndrome and multiple organ dysfunction syn- drome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2009;21(7):402-404.

88. Pelosi P, Croci M, Ravagnan I, et al. The effects of body mass on lung vol- umes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analg. 1998;87(3):654-660.

89. Pelosi P, Quintel M, Malbrain MLNG. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg. 2007;62(suppl 1):78-88.

90. Власенко А.В., Голубев А.М., Мороз В.В. и др. Дифференцированное лечение острого респираторного дистресс-синдрома. Общая реанима- тология. 2011;VII(4):5-14.

91. Protti A, Andreis DT, Iapichino GE, et al. Ventilation with Lower Tidal Vol- umes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N Engl J Med BioMed Cen- tral. 2000;342(18):1301-1308.

92. Frat J-P, Thille AW, Mercat A, et al. High-Flow Oxygen through Nasal Can- nula in Acute Hypoxemic Respiratory Failure. N Engl J Med. Massachusetts Medical Society. 2015;372(23):2185-2196.

93. Stéphan F, Barrucand B, Petit P, et al. High-Flow Nasal Oxygen vs Nonin- vasive Positive Airway Pressure in Hypoxemic Patients After Cardiothorac- ic Surgery. JAMA. 2015;313(23):2331-2339.

94. Combes A, Hajage D, Capellier G, et al. Extracorporeal Membrane Oxy- genation for Severe Acute Respiratory Distress Syndrome. N Engl J Med Mas- sachussetts Medical Society. 2018;378(21):1965-1975.

95. Michael JR, Barton RG, Saffle JR, et al. Inhaled nitric oxide versus conven- tional therapy: Effect on oxygenation in ARDS. Am J Respir Crit Care Med. 1998;157(5 PART I):1372-1380.

96. Gerlach M, Keh D, Gerlach H. Inhaled nitric oxide for acute respiratory dis- tress syndrome. Respir Care. 1999;184-192.

97. Lundin S, Mang H, Smithies M, et al. Inhalation of nitric oxide in acute lung injury: Results of a European multicentre study. Intensive Care Med. 1999;25(9):911-919.

98. Kallet RH. Evidence-based management of acute lung injury and acute re- spiratory distress syndrome. Respir Care. 2004;49(7):793-809.

99. Vieillard-Baron A, Matthay M, Teboul JL, et al. Expert’s opinion on man- agement of hemodynamics in ARDS patients: focus on the effects of me- chanical ventilation. Intensive Care Med. 2016;42(5):739-749.

100. Chen X, Ye J, Zhu Z, et al. Evaluation of high volume hemofiltration ac- cording to pulse-indicated continuous cardiac output on patients with acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. Hei- longjiang Institute of Science and Technology Information. 2014;26(9):650-654.

101. Beitler JR, Malhotra A, Thompson BT. Ventilator-induced Lung Injury. Clin Chest Med. 2016;37(4):633-646.


 


102. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tid- al volumes, recruitment maneuvers, and high positive end-expiratory pres- sure for acute lung injury and acute respiratory distress syndrome: a random- ized controlled trial. JAMA. 2008;299(6):637-645.

103. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Pa- tient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;40(2):159-211.

104. Singer P, Reintam Blaser A, Berger MM, et al. ESPEN guideline on clini- cal nutrition in the intensive care unit. Clin Nutr. 2019;38:48-79.

105. Kangelaris KN, Ware LB, Wang CY, et al. Timing of intubation and clinical outcomes in adults with acute respiratory distress syndrome. Crit Care Med. Lippincott Williams and Wilkins. 2016;44(1):120-129.

106. Antonelli M, Conti G, Esquinas A, et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome*. Crit Care Med. 2007;35(1):18-25.

107. Demoule A, Girou E, Richard J-C, et al. Benefits and risks of success or fail- ure of noninvasive ventilation. Intensive Care Med. 2006;32(11):1756-1765.

108. Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventila- tion and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33(1):1-6; discussion 230-232.

109. McMullen SM, Meade M, Rose L, et al. Partial ventilatory support modal- ities in acute lung injury and acute respiratory distress syndrome-A system- atic review. PLoS One. 2012;7(8):40190.

110. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syn- drome. N Engl J Med. Massachusetts Medical Society. 2004;351(4):327-336.

111. Slutsky AS. Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest. 1993;1833-1859.

112. Peters SG, Holets SR, Gay PC. Nasal High Flow Oxygen Therapy in Do- Not-Intubate Patients With Hypoxemic Respiratory Distress. Respir Care. 2012;58(4):597-600.

113. Vargas F, Saint-Leger M, Boyer A, et al. Physiologic effects of high-flow na- sal Cannula oxygen in critical care subjects. Respir Care. American Associa- tion for Respiratory Care. 2015;60(10):1369-1376.

114. Miguel-Montanes R, Hajage D, Messika J, et al. Use of High-Flow Nasal Cannula Oxygen Therapy to Prevent Desaturation During Tracheal Intuba- tion of Intensive Care Patients With Mild-to-Moderate Hypoxemia*. Crit Care Med. 2015;43(3):574-583.

115. Simon M, Wachs C, Braune S, et al. High-flow nasal cannula versus bag- valve-mask for preoxygenation before intubation in subjects with hypoxemic respiratory failure. Respir Care. American Association for Respiratory Care. 2016;61(9):1160-1167.

116. Aggarwal NR, Brower RG, Hager DN, et al. Oxygen Exposure Resulting in Arterial Oxygen Tensions Above the Protocol Goal Was Associated With Worse Clinical Outcomes in Acute Respiratory Distress Syndrome. Crit Care Med. NLM (Medline). 2018;46(4):517-524.

117. Hofmann R, James SK, Jernberg T, et al. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med. Massachussetts Medical Society. 2017;377(13):1240-1249.

118. Damiani E, Adrario E, Girardis M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. BioMed Central Ltd. 2014;18(6):711.

119. Roffe C, Nevatte T, Sim J, et al. Effect of routine low-dose oxygen supple- mentation on death and disability in adults with acute stroke: The stroke ox- ygen study randomized clinical trial. JAMA — J Am Med Assoc. American Medical Association. 2017;318(12):1125-1135.

120. Elmer J, Scutella M, Pullalarevu R, et al. The association between hyperox- ia and patient outcomes after cardiac arrest: analysis of a high-resolution da- tabase. Intensive Care Med. Springer Verlag. 2015;41(1):49-57.

121. Page D, Ablordeppey E, Wessman BT, et al. Emergency department hyper- oxia is associated with increased mortality in mechanically ventilated pa- tients: A cohort study. Crit Care. BioMed Central Ltd. 2018;22(1):9.

122. Pollack CV, Diercks DB, Roe MT, et al. 2004 American College of Cardi- ology/American Heart Association guidelines for the management of pa- tients with ST-elevation myocardial infarction: Implications for emergency department practice. Ann Emerg Med. Mosby Inc. 2005;45(4):363-376.

123. Arntz HR, Bossaert L, Filippatos GS. European Resuscitation Council Guidelines for Resuscitation 2005: Section 5. Initial management of acute coronary syndromes. Resuscitation. 2005;87-96.

124. Tolias CM, Reinert M, Seiler R, et al. Normobaric hyperoxia-induced im- provement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: A prospective historical cohort-matched


study [Internet]. J. Neurosurg. American Association of Neurological Surgeons.

2004;435-444.

125. Menzel M, Doppenberg EMR, Zauner A, et al. Cerebral oxygenation in pa- tients after severe head injury: Monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism, and intracranial pressure. J Neurosurg Anesthesiol. Lippincott Williams and Wilkins. 1999;11(4):240-251.

126. Rockswold SB, Rockswold GL, Zaun DA, et al. A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and nor- mobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg. 2013;118(6):1317-1328.

127. Taher A, Pilehvari Z, Poorolajal J, et al. Effects of normobaric hyperoxia in traumatic brain injury: A randomized controlled clinical trial. Trauma Mon. Kowsar Medical Publishing Company. 2016;21(1).

128. Quintard H, Patet C, Suys T, et al. Normobaric Hyperoxia is Associated with Increased Cerebral Excitotoxicity After Severe Traumatic Brain Injury. Neu- rocrit Care. Humana Press Inc. 2015;22(2):243-250.

129. Timofeev I, Carpenter KLH, Nortje J, et al. Cerebral extracellular chemis- try and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(Pt 2):484-494.

130. Barrot L, Asfar P, Mauny F, et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med. 2020;382(11):999.

131. Nin N, Muriel A, Peñuelas O, et al. Severe hypercapnia and outcome of me- chanically ventilated patients with moderate or severe acute respiratory dis- tress syndrome. Intensive Care Med. Springer Verlag. 2017;43(2):200-208.

132. Tiruvoipati R, Pilcher D, Buscher H, et al. Effects of Hypercapnia and Hy- percapnic Acidosis on Hospital Mortality in Mechanically Ventilated Pa- tients. Crit Care Med. Lippincott Williams and Wilkins. 2017;45(7):649-656.

133. Mekontso Dessap A, Boissier F, Charron C, et al. Acute cor pulmonale dur- ing protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862-870.

134. Schnader JY, Juan G, Howell JS. Arterial CO2 partial pressure affects dia- phragmatic function. J Appl Physiol. 1985;58(3):823-829.

135. Mador MJ, Wendel T, Kufel TJ. Effect of acute hypercapnia on diaphrag- matic and limb muscle contractility. Am J Respir Crit Care Med. American Thoracic Society. 1997;155(5):1590-1595.

136. Rafferty GF, Harris M Lou, Polkey MI, et al. Effect of hypercapnia on max- imal voluntary ventilation and diaphragm fatigue in normal humans. Am J Respir Crit Care Med. American Lung Association. 1999;160(5 I):1567-1571.

137. Juan G, Calverley P, Talamo C, et al. Effect of Carbon Dioxide on Diaphrag- matic Function in Human Beings. N Engl J Med. 1984;310(14):874-879.

138. Briva A, Vadász I, Lecuona E, et al. High CO2 levels impair alveolar epithe- lial function independently of pH. PLoS One. 2007;2(11):1238.

139. Doerr CH, Gajic O, Berrios JC, et al. Hypercapnic acidosis impairs plasma membrane wound reseating in ventilator-injured lungs. Am J Respir Crit Care Med. American Thoracic Society. 2005;171(12):1371-1377.

140. Chiu S, Kanter J, Sun H, et al. Effects of Hypercapnia in Lung Tissue Re- pair and Transplant. Curr Transplant Reports. Springer Science and Business Media LLC. 2015;2(1):98-103.

141. Dixon DL, Barr HA, Bersten AD, et al. Intracellular storage of surfactant and proinflammatory cytokines in co-cultured alveolar epithelium and mac- rophages in response to increasing CO2 and cyclic cell stretch. Exp Lung Res. 2008;34(1):37-47.

142. Tobin MJ, editor. Principles and practice of mechanical ventilation [Internet]. 3rd ed. Chicago, Illinois: McGraw-Hill Medical; 2013.

143. Chatburn RL, editor. Fundamentals of Mechanical Ventilation: A Short Course on the Theory and Application of Mechanical Ventilators. 1st ed. Cleveland Ohio: Mandu Press Ltd.; 2003.

144. Гриппи М.А. Патофизиология легких. М.: Бином; 2001.

145. Putensen C, Mutz NJ, Putensen-Himmer G, et al. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241-1248.

146. Putensen C, Muders T, Varelmann D, et al. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. Lippincott Wil- liams and Wilkins. 2006;12(1):13-18.

147. Jung B, Nougaret S, Conseil M, et al. Sepsis is associated with a preferential diaphragmatic atrophy: A critically ill patient study using tridimensional com- puted tomography. Anesthesiology. Lippincott Williams and Wilkins. 2014;120(5):1182-1191.

148. Demoule A, Jung B, Prodanovic H, et al. Diaphragm dysfunction on admis- sion to the intensive care unit: Prevalence, risk factors, and prognostic im- pact — A prospective study. Am J Respir Crit Care Med. 2013;188(2):213-219.


 


149. Jaber S, Petrof BJ, Jung B, et al. Rapidly progressive diaphragmatic weak- ness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183(3):364-371.

150. Hudson MB, Smuder AJ, Nelson WB, et al. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunc- tion and atrophy. Crit Care Med. NIH Public Access. 2012;40(4):1254-1260.

151. Beitler JR, Sands SA, Loring SH, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. Springer Verlag. 2016;42(9):1427-1436.

152. Pohlman MC, McCallister KE, Schweickert WD, et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med. Lippincott Williams and Wilkins. 2008;36(11):3019-3023.

153. Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony dur- ing assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515- 1522.

154. Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontane- ous breathing and muscle paralysis in two different severities of experimen- tal lung injury. Crit Care Med. 2013;41(2):536-545.

155. Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: High transpulmonary pressure associated with strong spontaneous breathing ef- fort may worsen lung injury. Crit Care Med. 2012;40(5):1578-1585.

156. Xirouchaki N, Kondili E, Vaporidi K, et al. Proportional assist ventilation with load-adjustable gain factors in critically ill patients: Comparison with pressure support. Intensive Care Med. 2008;34(11):2026-2034.

157. Kondili E, Prinianakis G, Alexopoulou C, et al. Respiratory load compen- sation during mechanical ventilation — Proportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med. 2006;32(5):692-699.

158. Грицан А.И., Екименко Л.Н., Стекина А.В. и др. Случай успешного при- менения неинвазивной вентиляции у больного с тяжелой внебольничной двусторонней пневмонией и острым повреждением легких. Научные те- зисы XII съезда Федерации анестезиологов и реаниматологов, Москва, 19—22 сентября 2010 г. с.122-123.

159. Lellouche F, Dionne S, Simard S, et al. High tidal volumes in mechanical- ly ventilated patients increase organ dysfunction after cardiac surgery. Anes- thesiology. 2012;116(5):1072-1082.

160. Serpa Neto A, Cardoso SO, Manetta JA, et al. Association Between Use of Lung-Protective Ventilation With Lower Tidal Volumes and Clinical Out- comes Among Patients Without Acute Respiratory Distress Syndrome. JA- MA. 2012;308(16):1651.

161. MacIntyre NR. Evidence-based guidelines for weaning and discontinuing ventilatory support: A collective task force facilitated by the American col- lege of chest physicians; the American association for respiratory care; and the American college of critical medicine. Chest. 2001.

162. Kacmarek RM, Kirmse M, Nishimura M, et al. The effects of applied vs au- to-PEEP on local lung unit pressure and volume in a four-unit lung model. Chest. American College of Chest Physicians. 1995;108(4):1073-1079.

163. Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;41(3):242-255.

164. van Haren F, Pham T, Brochard L, et al. Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observation- al Study to UNderstand the Global Impact of Severe Acute Respiratory Fail- urE Study. Crit Care Med. NLM (Medline). 2019;47(2):229-238.

165. Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asyn- chrony by reducing tidal volume during pressure-support ventilation. In t en- sive Care Med. 2008;34(8):1477-1486.

166. Prinianakis G, Kondili E, Georgopoulos D. Effects of the flow waveform method of triggering and cycling on patient-ventilator interaction during pressure support. Intensive Care Med. 2003;29(11):1950-1959.

167. Leung P, Jubran A, Tobin MJ. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. American Thoracic Society. 1997;155(6):1940-1948.

168. Thille AW, Lyazidi A, Richard JCM, et al. A bench study of intensive-care- unit ventilators: New versus old and turbine-based versus compressed gas- based ventilators. Intensive Care Med. 2009;35(8):1368-1376.

169. Sassoon CSH. Triggering of the ventilator in patient-ventilator interactions.

Respir Care. 2011;56(1):39-48.

170. Papazian L, Forel J-M, Gacouin A, et al. Neuromuscular Blockers in Ear- ly Acute Respiratory Distress Syndrome. N Engl J Med. 2010;363(12):1107- 1116.

171. Gainnier M, Roch A, Forel JM, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syn- drome. Crit Care Med. Lippincott Williams and Wilkins. 2004;32(1):113-119.


172. Forel JM, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749-2757.

173. Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model. Crit Care Med. 2012;40(5):1578-1585.

174. Caramez MP, Kacmarek RM, Helmy M, et al. A comparison of methods to identify open-lung PEEP. Intensive Care Med. NIH Public Access. 2009;35(4):740-747.

175. Suzumura EA, Amato MBP, Cavalcanti AB. Understanding recruitment ma- neuvers. Intensive Care Med. 2016;42(5):908-911.

176. Gattinoni L, Caironi P, Cressoni M, et al. Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome. N Engl J Med. 2006;354(17):1775- 1786.

177. Mercat A, Richard J-CC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syn- drome: a randomized controlled trial. JAMA. 2008;299(6):646-655.

178. Talmor D, Sarge T, Malhotra A, et al. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. N Engl J Med. Massachusetts Med- ical Society. 2008;359(20):2095-2104.

179. Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of Lung Recruit- ment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. JAMA. 2017;318(14):1335.

180. Oba Y, Thameem DM, Zaza T. High levels of PEEP may improve survival in acute respiratory distress syndrome: A meta-analysis. Respir Med. 2009;103(8):1174-1181.

181. Phoenix SI, Paravastu S, Columb M, et al. Does a Higher Positive End Ex- piratory Pressure Decrease Mortality in Acute Respiratory Distress Syn- drome? Anesthesiology. 2009;110(5):1098-1105.

182. Briel M, Meade M, Mercat A, et al. Higher vs Lower Positive End-Expira- tory Pressure in Patients With Acute Lung Injury and Acute Respiratory Dis- tress Syndrome. JAMA. American Medical Association. 2010;303(9):865.

183. Guo L, Xie J, Huang Y, et al. Higher PEEP improves outcomes in ARDS patients with clinically objective positive oxygenation response to PEEP: A systematic review and meta-analysis. BMC Anesthesiol. BioMed Central Ltd. 2018;18(1):172.

184. Храпов К.Н. Респираторная поддержка при тяжелой пневмонии: Дис.

... д-ра мед. наук. СПб. 2011.

185. Власенко А.В., Мороз В.В., Яковлев В.Н. и др. Выбор способа опти- мизации ПДКВ у больных с острым респираторным дистресс-синдро- мом. Общая реаниматология. FSBI SRIGR RAMS. 2012;VIII(1):13-21.

186. Borges JB, Okamoto VN, Matos GFJ, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(3):268-278.

187. Bouhemad B, Brisson H, Le-Guen M, et al. Bedside Ultrasound Assess- ment of Positive End-Expiratory Pressure — induced Lung Recruitment. Am J Respir Crit Care Med. 2011;183(3):341-347.

188. Tusman G, Acosta CM, Costantini M. Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J. 2016;8(1):8.

189. Николаенко Э.М. Управление функцией легких в ранний период после протезирования клапанов сердца: Дис. д-ра мед. наук. М. 1989.

190. Заболотских И.Б., Лебединский К.М., Анисимов М.А. и др. Периопе- рационное ведение больных с сопутствующим морбидным ожирени- ем (второй пересмотр). Клинические рекомендации. Тольяттинский медицинский консилиум. 2016;5-6:38-56.

191. Chiumello D, Cressoni M, Colombo A, et al. The assessment of transpul- monary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670-1678.

192. Gattinoni L, Bombino M, Pelosi P, et al. Lung structure and function in dif- ferent stages of severe adult respiratory distress syndrome. JAMA. 1994;271(22):1772-1779.

193. Musch G, Bellani G, Vidal Melo MF, et al. Relation between shunt, aera- tion, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med. 2008;177(3):292-300.

194. Зайратьянц О.В., Черняев А.Л., Чучалин А.Г. Патоморфология легких при тяжелой форме гриппа A(H1N1). Анестезиология и реаниматоло- гия. 2010;3:25-29.

195. Reske AW, Reske AP, Gast HA, et al. Extrapolation from ten sections can make CT-based quantification of lung aeration more practicable. Intensive Care Med. 2010;36(11):1836-1844.

196. Jonson B, Richard J, Straus C, et al. Pressure-volume curves and compli- ance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med. 1999;159(4):1172-1178.


 


197. Dellamonica J, Lerolle N, Sargentini C, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;37(10):1595-1604.

198. Ручина Е.В., Шарнин А.В., Лебединский К.М. и др. Оценка функци- ональной остаточной емкости легких и показателя потребления кис- лорода во время настройки уровня ПДКВ. Анестезиология и реанима- тология. 2013;3:51-54.

199. Smetkin AA, Kuzkov VV, Suborov EV, et al. Increased Extravascular Lung Water Reduces the Efficacy of Alveolar Recruitment Maneuver in Acute Re- spiratory Distress Syndrome. Crit Care Res Pract. 2012;606528.

200. Власенко А.В., Остапченко Д.А., Шестаков Д.А. и др. Эффективность применения маневра «открытия легких» в условиях ИВЛ у больных с острым респираторным дистресс-синдромом. Общая реаниматология. 2006;2(4):59.

201. Ranieri VM, Giuliani R, Fiore T, et al. Volume-Pressure Curve of the Re- spiratory System Predicts Effects of PEEP in ARDS: «Occlusion» versus

«Constant Flow» Technique. Am J Respir Crit Care Med. 1994;149(1):19-27.

202. Chiumello D, Gattinoni L. Stress index in presence of pleural effusion: Does it have any meaning? Intensive Care Med. 2011;37(4):561-563.

203. Adams AB, Cakar N, Marini JJ. Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care. 2001;46(7):686-693.

204. Kárason S, Søndergaard S, Lundin S, et al. A new method for non-invasive, manoeuvre-free determination of «static» pressure-volume curves during dy- namic/therapeutic mechanical ventilation. Acta Anaesthesiol Scand. 2000;44:578-585.

205. Kárason S, Søndergaard S, Lundin S, et al. Continuous on-line measure- ments of respiratory system, lung and chest wall mechanics during mechan- ic ventilation. Intensive Care Med. 2001;27(8):1328-1339.

206. Frerichs I, Amato MBP, Van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and rec- ommendations: Consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017.

207. Gattinoni L, Mascheroni D, Torresin A, et al. Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med. 1986;12(3):137-142.

208. Kunst PW, Vazquez de Anda G, Bohm SH, et al. Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med. 2000;28(12):3891-3895.

209. Gattinoni L, Pesenti A, Avalli L, et al. Pressure-Volume Curve of Total Re- spiratory System in Acute Respiratory Failure: Computed Tomographic Scan Study. Am Rev Respir Dis. 1987;136(3):730-736.

210. Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-ex- piratory pressure: A mathematical model of acute respiratory distress syn- drome lungs. Am J Respir Crit Care Med. 2001;163(1):69-78.

211. Jonson B, Svantesson C. Elastic pressure-volume curves: what information do they convey? Thorax. BMJ Publishing Group Ltd and British Thoracic So- ciety. 1999;54(1):82-87.

212. Mehta A, Bhagat R. Preventing Ventilator-Associated Infections. Clin Chest Med. 2016;37(4):683-692.

213. Vassilakopoulos T. Understanding wasted/ineffective efforts in mechanical- ly ventilated COPD patients using the Campbell diagram. Intensive Care Med. 2008;34(7):1336-1339.

214. Carney DE, Bredenberg CE, Schiller HJ, Picone AL MU, Gatto LA, et al. The Mechanism of Lung Volume Change during Mechanical Ventilation. Am J Respir Crit Care Med. American Thoracic Society. New York, NY; 1999;160(5):1697-1702.

215. Schiller HJ, Steinberg J, Halter J, et al. Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit Care Med. 2003;31(4):1126-1133.

216. Olegård C, Söndergaard S, Houltz E, et al. Estimation of functional residu- al capacity at the bedside using standard monitoring equipment: A modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101(1):206-212.

217. Chiumello D, Cressoni M, Chierichetti M, et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expira- tory lung volume. Crit Care. 2008;12(6):150.

218. Dreyfuss D, Hubmayr R. What the concept of VILI has taught us about AR- DS management. Intensive Care Med. 2016;42(5):811-813.

219. Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178(4):346-355.


220. Chiumello D, Colombo A, Algieri I, et al. Effect of body mass index in acute respiratory distress syndrome. Asai T., editor. Br J Anaesth. 2016;116(1):113-121.

221. Cortes-Puentes GA, Gard KE, Adams AB, et al. Value and Limitations of Transpulmonary Pressure Calculations During Intra-Abdominal Hyperten- sion. Crit Care Med. 2013;41(8):1870-1877.

222. Jakob SM, Knuesel R, Tenhunen JJ, et al. Increasing abdominal pressure with and without PEEP: effects on intra-peritoneal, intra-organ and intra- vascular pressures. BMC Gastroenterol. BioMed Central. 2010;10:70.

223. Lundin S, Grivans C, Stenqvist O. Transpulmonary pressure and lung elas- tance can be estimated by a PEEP-step manoeuvre. Acta Anaesthesiol Scand. 2015;59(2):185-196.

224. Papavramidis TS, Marinis AD, Pliakos I, et al. Abdominal compartment syn- drome — Intra-abdominal hypertension: Defining, diagnosing, and manag- ing. J emergencies, trauma Shock. Medknow Publications. 2011;4(2):279-291.

225. Pelosi P, Ravagnan I, Giurati G, et al. Positive end-expiratory pressure im- proves respiratory function in obese but not in normal subjects during anes- thesia and paralysis. Anesthesiology. The American Society of Anesthesiologists. 1999;91(5):1221-1231.

226. Гельфанд Б.Р., Проценко Д.Н., Подачин П.В. и др. Синдром интра- абдоминальной гипертензии: состояние проблемы. Современная ме- дицинская наука. 2012;2:4-26.

227. Эпштейн С.Л. Периоперационное анестезиологическое обеспечение больных с морбидным ожирением. Регионарная анестезия и лечение острой боли. 2012;6(3):5-27.

228. Fumagalli J, Berra L, Zhang C, et al. Transpulmonary Pressure Describes Lung Morphology During Decremental Positive End-Expiratory Pressure Trials in Obesity*. Crit Care Med. 2017;45(8):1374-1381.

229. Pelosi P, Vargas M. Mechanical ventilation and intra-abdominal hyperten- sion: «Beyond Good and Evil». Crit Care. 2012;16(6):187.

230. Amato MBP, Barbas CSV, Medeiros DM, et al. Effect of a Protective-Ven- tilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N Engl J Med. Massachusetts Medical Society. 1998;338(6):347-354.

231. Villar J, Kacmarek RM, Pérez-Méndez L, et al. A high positive end-expira- tory pressure, low tidal volume ventilatory strategy improves outcome in per- sistent acute respiratory distress syndrome: A randomized, controlled trial*. Cr i t Care Med. 2006;34(5):1311-1318.

232. Мороз В.В., Власенко А.В., Яковлев В.Н. и др. Оптимизаия пдкв у больных с острым респираторным дистресс-синдромом, вызванным прямыми и непрямыми повреждающими факторами. Общая реанима- тология. 2012;VIII(3):5-13.

233. Rezoagli E, Bellani G. How i set up positive end-expiratory pressure: Evi- dence — And physiology-based! Crit Care. BioMed Central Ltd. 2019;23(1):412.

234. Sahetya SK, Goligher EC, Brower RG. Fifty Years of Research in ARDS. Setting Positive End-Expiratory Pressure in Acute Respiratory Distress Syn- drome. Am J Respir Crit Care Med. 2017;195(11):1429-1438.

235. Gattinoni L, Carlesso E, Brazzi L, et al. Friday night ventilation: A safety starting tool kit for mechanically ventilated patients. Minerva Anestesiol. Ed- izioni Minerva Medica. 2014;1046-1057.

236. Regli A, Hockings LE, Musk GC, et al. Commonly applied positive end-ex- piratory pressures do not prevent functional residual capacity decline in the setting of intra-abdominal hypertension: a pig model. Crit Care. 2010;14(4):128.

237. Regli A, Chakera J, De Keulenaer BL, et al. Matching positive end-expira- tory pressure to intra-abdominal pressure prevents end-expiratory lung vol- ume decline in a pig model of intra-abdominal hypertension. Crit Care Med. 2012;40(6):1879-1886.

238. Pirrone M, Fisher D, Chipman D, et al. Recruitment Maneuvers and Pos- itive End-Expiratory Pressure Titration in Morbidly Obese ICU Patients. Crit Care Med. 2016;44(2).

239. Regli A, De Keulenaer BL, Palermo A, et al. Positive end-expiratory pres- sure adjusted for intra-abdominal pressure — A pilot study. J Crit Care. W.B. Saunders. 2018;43:390-394.

240. Krebs J, Pelosi P, Tsagogiorgas C, et al. Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: A pilot study. Crit Care. 2009;13(5):160.

241. Yang Y, Li Y, Liu S-Q, et al. Positive end expiratory pressure titrated by trans- pulmonary pressure improved oxygenation and respiratory mechanics in acute respiratory distress syndrome patients with intra-abdominal hyperten- sion. Chin Med J (Engl). 2013;126(17):3234-3239.

242. Regli A, Pelosi P, Malbrain MLNG. Ventilation in patients with intra-ab- dominal hypertension: what every critical care physician needs to know [In- ternet]. Ann Intensive Care. Springer Verlag. 2019;52.


 


243. Florio G, Ferrari M, Bittner EA, et al. A lung rescue team improves surviv- al in obesity with acute respiratory distress syndrome. Crit Care. NLM (Med- line). 2020;24(1):4.

244. Lapinsky SE, Aubin M, Mehta S, et al. Safety and efficacy of a sustained in- flation for alveolar recruitment in adults with respiratory failure. Intensive Care Med. 1999;25(11):1297-1301.

245. Gattinoni L, Pelosi P, Crotti S, et al. Effects of positive end-expiratory pres- sure on regional distribution of tidal volume and recruitment in adult respi- ratory distress syndrome. Am J Respir Crit Care Med. American Thoracic So- ciety. 1995;151(6):1807-1814.

246. Herff H, Paal P, Von Goedecke A, et al. Influence of ventilation strategies on survival in severe controlled hemorrhagic shock. Crit Care Med. Lippin- cott Williams and Wilkins. 2008;36(9):2613-2620.

247. Krismer AC, Wenzel V, Lindner KH, et al. Influence of positive end-expi- ratory pressure ventilation on survival during severe hemorrhagic shock. Ann Emerg Med. 2005;46(4):337-342.

248. Jaber S, Jung B, Matecki S, et al. Clinical review: Ventilator-induced dia- phragmatic dysfunction — human studies confirm animal model findings! Crit Care BioMed Central. 2011;206.

249. Arnal JM, Paquet J, Wysocki M, et al. Optimal duration of a sustained in- flation recruitment maneuver in ARDS patients. Intensive Care Med. 2011;37(10):1588-1594.

250. Hodgson CL, Tuxen DV, Davies AR, et al. A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and target- ed low airway pressures in patients with acute respiratory distress syndrome. Crit Care. 2011;15(3):133.

251. Hodgson CL, Cooper DJ, Arabi Y, et al. Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP) A Phase II, multicenter randomized controlled clinical trial. Am J Respir Crit Care Med. American Thoracic Society. 2019;200(11):1363-1372.

252. Lim CM, Jung H, Koh Y, et al. Effect of alveolar recruitment maneuver in early acute respiratory distress syndrome according to antiderecruitment strategy, etiological category of diffuse lung injury, and body position of the patient. Crit Care Med. 2003;31(2):411-418.

253. Brower RG, Morris A, MacIntyre N, et al. Effects of recruitment maneu- vers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med. 2003;31(11):2592-2597.

254. Nielsen J, Østergaard M, Kjaergaard J, et al. Lung recruitment maneuver depresses central hemodynamics in patients following cardiac surgery. Inten- sive Care Med. 2005;31(9):1189-1194.

255. Магомедов Р.М., Проценко Д.Н., Игнатенко О.В. и др. Оценка изме- нений гемодинамики при проведении маневров открытия альвеол у больных в критических состояниях с острым повреждением легких/ острым респираторным дистресс-синдромом. Анестезиол огия и реа- ниматология. 2011;(6):70-—74.

256. Tugrul S, Akinci O, Ozcan PE, et al. Effects of sustained inflation and postin- flation positive end-expiratory pressure in acute respiratory distress syndrome: Focusing on pulmonary and extrapulmonary forms. Crit Care Med. 2003;31(3):738-744.

257. Albert RK, Hubmayr RD. The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med. 2000;161(5):1660-1665.

258. Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233-1239.

259. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone posi- tioning in hypoxemic acute respiratory failure: A randomized controlled tri- al. J Am Med Assoc. 2004;292(19):2379-2387.

260. Girard R, Gacouin A, Guérin C, et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N Engl J Med. Massachusetts Medical Soci- ety. 2013;368(23):2159-2168.

261. Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: Systematic re- view and meta-analysis [Internet]. Intensive Care Med. 2010;585-599.



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 49; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.214.32 (0.312 с.)