Физиологическое значение боли. Определение. Классификация. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физиологическое значение боли. Определение. Классификация.



Нормальный раздражитель не вызывет болевых реакций. Болевая, или ноцицептивная, чувствительность имеет особое значение для выживания организма, так как сигнализирует об опасности при действии любых чрезмерно сильных и вредных агентов. В симптомокомплексе многих заболеваний боль - одно из первых, а иногда и единственное проявление патологии и важный индикатор в диагностике.

Боль — своеобразное психофизиологическое состояние человека:

-возникающий в результате воздействия сверхсильного или разрушающего раздражителя, вызывающего органические нарушения в органе

- интегративное состояние организма, в котором задействованы многие системы

- имеет 3 компонента: сенсорный, психоэмоциональный (совокупность ощущений), вегетативный.

Классификация боли:

1) по локализации источника:соматическая, висцеральная

2) филогенез: протопатическая (древние ощущения), эпикритическая

3) симптоматика: нервалгия, каузалгия, фантомные боли, проекционные боли, отраженные боли.

4) течение во времени: мгновенная короткая, приступообразная с безболезненным интервалом, приступообразная с интервалом понижения интенсивности, достигающая максимума, непрерывная, пульсирующая.
174. Психофизиология боли. Сенсорный, психоэмоциональный и рефлекторный компоненты.

Компоненты боли. Любая боль включает ряд составляющих, или компонентов. К числу таких составляющих боли относится сенсорный, аффективный, вегетативный, двигательный и когнитивный компоненты.
Сенсорный компонент передает в кору головного мозга информацию о местоположении источника боли, начале и окончании его действия и о его интенсивности. Человек осознает эту информацию в виде ощущения, точно так же как и другие сенсорные сигналы, например, запах или давление.
Аффективный компонент окрашивает эту информацию неприятными переживаниями.
Вегетативный компонент обеспечивает реакцию на болевую стимуляцию. Например, при погружении руки в горячую воду происходит расширение кровеносных сосудов, однако в обоих случаях повышается кровяное давление, учащается пульс, расширяются зрачки, изменяется ритм дыхания. Это так называемый вегетативный компонент боли. При сильной боли реакция вегетативной нервной системы может быть и более выраженной, например, при желчной колике может возникнуть тошнота, рвота, потоотделение резкое падение кровяного давления.
Двигательный компонент чаще всего проявляется как рефлекс избегания или защиты. Мышечное напряжение проявляется как непроизвольная реакция, направленная на избегание боли.
Когнитивный компонент боли связан с рациональной оценкой происхождения и содержания боли, а также регуляцией поведения, связанного с болью.
В раннем онтогенезе боль играет роль обратной связи, фиксирующей переживание и изменяющей соответствующие проявления психической реальности ребенка. Доказано, что поведенческие и эмоционально нормальные реакции на болевые стимулы не являются врожденными, они приобретаются в ходе развития. Если этот опыт не приобретен в раннем детстве, выработать соответствующие реакции позднее оказывается очень трудно.
В онтогенезе формируется также и градация в оценке болевых ощущений (слабая, беспокоящая, сильная, невыносимая). Главное в этой оценке — сравнение боли, испытываемой в данный момент, с ранее пережитыми видами боли. Иными словами, текущее состояние измеряется относительно прежних переживаний, хранящихся в памяти и оценивается в свете накопленного опыта. Такую оценку можно рассматривать в качестве когнитивного компонента. В зависимости от результата этого сравнения психомоторный компонент боли будет выражаться по-разному: мимикой, стонами, жалобами, различными просьбами и т.п. Когнитивное суждение, вероятно, влияет и на степень проявления аффективного и вегетативного компонентов боли. Так, например, человек больше страдает от боли, которая, по его мнению, оказывает важное влияние на самочувствие, чем от такой же по интенсивности, но привычной и субъективно оцениваемой как безвредная.
На оценку боли и ее выражение влияет и ряд других факторов, например, жалобы человека на боль зависят от его социального статуса, семейного воспитания и этнического происхождения.

Оценка боли:

Тепловой порог боли 44,5С= 862,5 Вт/см2

21 ступень порогов различия — Just Noticeable Difference (JND)

единица болевого ощущения «dol» - 2 JND

1 dol =0,06 Вт/см2

Механическая оценка:

порог- 600г/см2 или 30 г на кончик иглы =5,9Н/см2 15 JND

Химическая оценка:

интенсивная предельная боль — 10,5 dol

Шарпантье (1986) D = k*I*T (I-интенсивность, T-длительность)
175. Нейрофизиологические механизмы боли. Нейрохимические процессы, "воротные" механизмы, антиноцицептивная система мозга.

Болевые рецепторы

Болевые рецепторы являются свободными окончаниями чувствительных миелиновых нервных волокон Аδ и немиелиновых волокон С. Они найдены в коже, слизистых оболочках, надкостнице, зубах, мышцах, суставах, внутренних органах и их оболочках, сосудах. Их нет в нервной ткани головного и спинного мозга. Наибольшая их плотность имеется на границе дентина и эмали зуба.

Выделяют следующие основные типы болевых рецепторов:

1. Механоноцицепторы и механотермические ноцицепторы Аδ-волокон реагируют на сильные механические и термические раздражители, проводят быструю механическую и термическую боль, быстро адаптируются; расположены преимущественно в коже, мышцах, суставах, надкостнице; их афферентные нейроны имеют малые рецептивные поля.

2. Полисенсорные ноцицепторы С-волокон реагируют на механические, термические и химические раздражители, проводят позднюю плохо локализованную боль, медленно адаптируются; их афферентные нейроны имеют большие рецептивные поля.

Болевые рецепторы возбуждаются тремя видами раздражителей:

1. Механические раздражители, создающие давление более 40г/мм2 при сдавливании, растяжении, сгибании, скручивании.

2. Термические раздражители могут быть тепловыми (> 450С) и холодовыми (< 150С).

3. Химические раздражители, освобождающиеся из поврежденных клеток тканей, тучных клеток, тромбоцитов (К+, Н+, серотонин, ацетилхолин, гистамин), плазмы крови (брадикинин, каллидин) и окончаний ноцицептивных нейронов (вещество Р). Одни из них возбуждают ноцицепторы (К+, серотонин, гистамин, брадикинин, АДФ), другие сенсибилизируют их.

Свойства болевых рецепторов: болевые рецепторы имеют высокий порог возбуждения, что обеспечивает их ответ только на чрезвычайные раздражители. Ноцицепторы С-афферентов плохо адаптируются к длительно действующим раздражителям. Возможно повышение чувствительности болевых рецепторов – снижение порога их раздражения при многократной или длительной стимуляции, что называется гипералгезией. При этом ноцицепторы способны отвечать на стимулы субпороговой величины, а также возбуждаться раздражителями других модальностей.

Проводящие пути болевой чувствительности

Нейроны, воспринимающие болевую импульсацию. От болевых рецепторов туловища, шеи и конечностей Аδ- и С-волокна первых чувствительных нейронов (их тела находятся в спинальных ганглиях) идут в составе спинномозговых нервов и входят через задние корешки в спинной мозг, где разветвляются в задних столбах и образуют синаптические связи прямо или через интернейроны со вторыми чувствительными нейронами, длинные аксоны которых входят в состав спиноталамических путей. При этом они возбуждают два вида нейронов: одни нейроны активируются только болевыми стимулами, другие – конвергентные нейроны – возбуждаются также и неболевыми стимулами. Вторые нейроны болевой чувствительности преимущественно входят в состав боковых спиноталамических путей, которые и проводят большую часть болевых импульсов. На уровне спинного мозга аксоны этих нейронов переходят на сторону, противоположную раздражению, в стволе головного мозга они доходят до таламуса и образуют синапсы на нейронах его ядер. Часть болевой импульсации первых афферентных нейронов переключаются через интернейроны на мотонейроны мышц-сгибателей и участвуют в формировании защитных болевых рефлексов. В боковом спиноталамическом пути выделяют эволюционно более молодой неоспиноталамический путь и древний палеоспиноталамический путь.

Неоспиноталамический путь проводит болевые сигналы по Аδ-волокнам преимущественно в специфические сенсорные (вентральные задние) ядра таламуса, имеющие хорошую топографическую проекцию периферии тела. Кроме этого небольшая часть импульсов поступает в ретикулярную формацию ствола и далее в неспецифические ядра таламуса. Передача возбуждения в синапсах этого пути осуществляется с помощью быстродействующего медиатора глутамата. Из специфических ядер таламуса болевые сигналы передаются преимущественно в сенсорную кору больших полушарий. Эти особенности формируют основную функцию неоспиноталамического пути – проведение «быстрой» боли и восприятие ее с высокой степенью локализации.

Палеоспиноталамический путь проводит болевые сигналы по С-волокнам преимущественно в неспецифические ядра таламуса прямо или после переключения в нейронах ретикулярной формации ствола мозга. Передача возбуждения в синапсах этого пути происходит более медленно. Медиатором является вещество Р. Из неспецифических ядер импульсация поступает в сенсорную и другие отделы коры больших полушарий. Небольшая часть импульсации поступает и в специфические ядра таламуса. В основном волокна этого пути оканчиваются на нейронах 1) неспецифических ядер таламуса; 2) ретикулярной формации; 3) центрального серого вещества; 4) голубого пятна; 5) гипоталамуса. Через палеоспиноталамический путь проводится «поздняя», плохо локализуемая боль, формируются аффективно-мотивационные проявления болевой чувствительности.

Кроме этого болевая чувствительность частично проводится по другим восходящим путям: переднему спиноталамическому, тонкому и клиновидному путям.

Вышеназванные пути проводят и другие виды чувствительности: температурную и тактильную.

Роль коры больших полушарий в восприятии боли

Полноценное чувственное восприятие боли организмом без участия коры головного мозга невозможно.

Первичное проекционное поле болевого анализатора находится в соматосенсорной коре задней центральной извилины. Оно обеспечивает восприятие «быстрой» боли и идентификацию места ее возникновения на теле. Для более точной идентификации локализации боли в процесс обязательно включается и нейроны моторной коры передней центральной извилины.

Вторичное проекционное поле расположено в соматосенсорной коре на границе пересечения центральной борозды с верхним краем височной доли. Нейроны данного поля имеют двусторонние связи с ядрами таламуса, что позволяет этому полю избирательно фильтровать, проходящие через таламус возбуждения болевого характера. А это в свою очередь позволяет данному полю вовлекаться в процессы, связанные с извлечением из памяти энграммы необходимого поведенческого акта, его реализации в деятельности эффекторов и оценки качества достигнутого полезного результата. Двигательные компоненты болевого поведения формируются в совместной деятельности моторной и премоторной коры, базальных ганглиев и мозжечка.

Лобная кора играет важную роль в восприятии боли. Она обеспечивает самооценку боли (ее когнитивный компонент) и формирование целенаправленного болевого поведения.

Лимбическая система (поясная извилина, гиппокамп, зубчатая извилина, миндалевидный комплекс височной доли) получает болевую информацию от передних ядер таламуса и формирует эмоциональный компонент боли, запускает вегетативные, соматические и поведенческие реакции, обеспечивающие приспособительные реакции к болевому раздражителю.

Некоторые виды болевых ощущений

Существуют боли, которые названы проекционными или фантомными. Их возникновение основано на законе проекции боли: какая бы часть афферентного пути не раздражалась, боль ощущается в области рецепторов данного сенсорного пути. По современным данным в формировании данного вида болевого ощущения участвуют все отделы болевой сенсорной системы.

Существуют также так называемые отраженные боли: когда боль ощущается не только в пораженном органе, но и в соответствующем дерматоме тела. Участки поверхности тела соответствующего дерматома, где возникает ощущение боли, назвали зонами Захарьина – Геда. Возникновение отраженных болей связано с тем, что нейроны, проводящие болевую импульсацию от рецепторов пораженного органа и кожи соответствующего дерматома, конвергируют на одном и том же нейроне спиноталамического пути. Раздражение этого нейрона с рецепторов пораженного органа в соответствии с законом проекции боли приводит к тому, что боль ощущается и в области кожных рецепторов.

Антиноцицептивная система

Антиболевая система состоит из четырех уровней: спинального, стволового, гипоталамического и коркового.

1. Спинальный уровень антиноцицептовной системы. Важным ее компонентом является «воротный контроль» спинного мозга, концепция которого имеет следующие основные положения: передача болевых нервных импульсов с первых нейронов на нейроны спиноталамических путей (вторые нейроны) в задних столбах спинного мозга модулируется спинальным воротным механизмом – тормозными нейронами, расположенными в желатинозном веществе спинного мозга. На этих нейронах оканчиваются разветвления аксонов различных сенсорных путей. В свою очередь нейроны желатинозной субстанции оказывают пресинаптическое торможение в местах переключения первых и вторых нейронов болевых и других сенсорных путей. Часть нейронов являются конвергентными: на них образуют синапсы нейроны не только от болевых, но и от других рецепторов. Спинальный воротный контроль регулируется соотношением импульсов, поступающих по афферентным волокнам большого диаметра (неболевая чувствительность) и малого диаметра (болевая чувствительность). Интенсивный поток импульсов по волокнам большого диаметра ограничивает передачу болевых сигналов на нейроны спиноталамических путей (закрывает «ворота»). Напротив, интенсивный поток болевых импульсов по первому афферентному нейрону, ингибируя тормозные интернейроны, облегчает передачу болевых сигналов на нейроны спиноталамических путей (открывает «ворота»). Спинальный воротный механизм находится под постоянным влиянием нервных импульсов структур ствола мозга, которые передаются по нисходящим путям как на нейроны желатинозной субстанции, так и на нейроны спиноталамических путей.

2. Стволой уровень антиноцицептивной системы. К стволовым структурам противоболевой системы относятся, во-первых, центральное серое вещество и ядра шва, образующие единый функциональный блок, во-вторых, крупноклеточное и парагигантоклеточное ядра ретикулярной формации и голубое пятно. Первый комплекс блокирует прохождение болевой импульсации на уровне релейных нейронов ядер задних рогов спинного мозга, а также релейных нейронов сенсорных ядер тройничного нерва, образующих восходящие пути болевой чувствительности. Второй комплекс возбуждает почти всю антиноцицептивную систему (см.рис.1).

3. Гипоталамический уровень антиноцицептивной системы, с одной стороны, функционирует самостоятельно, а с другой – выступает как настройка, контролирующая и регулирующая антиноцицептивные механизмы стволового уровня за счет связей гипоталамических нейронов разной ядерной принадлежности и разной нейрохимической специфичности. Среди них идентифицированы нейроны, в окончаниях аксонов которых выделяются энкефалины, β-эндорфин, норадреналин, дофамин см.рис.2).

4. Корковый уровень антиноцицептивной системы. Объединяет и контролирует деятельность антиноцицептивных структур различного уровня соматосенсорная область коры больших полушарий. При этом наиболее важную роль в активации спинальных и стволовых структур играет вторичная сенсорная область. Ее нейроны образуют наибольшее количество волокон нисходящего контроля болевой чувствительности, направляющиеся к задним рогам спинного мозга и ядрам ствола головного мозга. Вторичная сенсорная кора видоизменяет активность стволового комплекса антиноцицептивной системы. Кроме этого соматосенсорные поля коры больших полушарий контролируют проведение афферентных болевых импульсов через таламус. Кроме таламуса, кора большого мозга регламентирует прохождение болевой импульсации в гипоталамусе, лимбической системе, ретикулярной формации, спинном мозге. Ведущая роль в обеспечении кортико-гипоталамических влияний отводится нейронам лобной коры.

Медиаторы антиноцицептивной системы

К медиаторам противоболевой системы относят пептиды, которые образуются в головном мозге, аденогипофизе, мозговом слое надпочечников, желудочно-кишечном тракте, плаценте из неактивных предшественников.. Сейчас к опиатным медиаторам антиноцицептивной системы относят: 1) ά-, β-, γ-эндорфины; 2) энкефалины; 3) динорфины. Эти медиаторы действуют на три вида опиатных рецепторов: μ-, δ-, κ-рецепторы. Наиболее селективным стимулятором μ-рецепторов являются эндорфины, δ-рецепторов – энкефалины, а κ-рецепторов – динорфины. Плотность μ- и κ-рецепторов высокая в коре больших полушарий и в спинном мозгу, средняя – в стволе головного мозга; плотность δ-рецепторов средняя в коре больших полушарий и спинном мозгу, малая – в стволе мозга. Опиоидные пептиды угнетают действие веществ, вызывающих боль, на уровне ноцицепторов, уменьшают возбудимость и проводимость болевой импульсации, угнетают вызванную реакцию нейронов, находящихся в составе цепей, передающих болевую импульсацию. Эти пептиды поступают к нейронам болевой сенсорной системы с кровью и ликвором. Выделяются опиоидные медиаторы в синаптических окончаниях нейронов противоболевой системы. Аналгезирующий эффект эндорфинов высокий в головном и спинном мозге, эффект энкефалинов в этих структурах средний, эффект динорфинов в головном мозге низкий, в спинном мозге – высокий.

Степень выраженности болевого ощущения не определяется одной лишь силой экзогенного или эндогенного болевого воздействия. Во многом оно зависит от соотношения активностей ноцицептивного и антиноцицептивного отделов системы боли, что имеет приспособительное значение.

 

10. Физиология центральной нервной системы
176. Методы исследования ЦНС.
177. Суммация возбуждения в центральной нервной системе, ее виды и значение в рефлекторной деятельности.
178. Постсинаптическое торможение. Тормозные нейроны и синапсы.
179. Пресинаптическое торможение в центральной нервной системе. Механизм возникновения и значение.
180. Механизмы координированной рефлекторной деятельности.
181. Сухожильные рефлексы. Рецепторы, афферентные волокна, нервные центры.
182. Структурные и функциональные особенности соматической и вегетативной нервной системы. Симпатическая нервная система. Ее влияние на органы.
183. Механизмы синаптической передачи в симпатической и парасимпатической нервной системе.
184. Парасимпатическая нервная система. Ее влияние на органы.
185. Принцип доминанты. Механизмы. Значение в рефлекторной деятельности.
186. Восходящая ретикулярная активирующая система мозга. Афферентные входы. Влияние ретикулярной формации на активность ЦНС.
187. Влияние структур ствола головного мозга на тонус скелетных мышц. Децеребрационная ригидность.
188. Статические и статокинетические рефлексы. Их механизмы и значение.
189. Мозжечок, его значение в координации движений. Нарушения работы мозжечка. Связи мозжечка.
190. Межнейронное взаимодействие в мозжечке. Значение клеток Пуркинье.
191. Функции зрительных бугров промежуточного мозга. Классификация ядер, их значение.
192. Значение гипоталамуса в регуляции вегетативных функций.
193. Моторные проекционные зоны коры больших полушарий. Пирамидная система, ее значение.
194. Экстрапирамидная система, ее основные структуры. Значение в регуляции движений.
195. Проекционные зоны коры больших полушарий. Концепции и теории локализации функций в больших полушариях.


176. Методы исследования ЦНС.

Существуют следующие методы исследования функций ЦНС:

1. метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом;

2. метод экстирпации (удаления) или разрушения участков мозга;

3. метод раздражения различных отделов и центров мозга;

4. анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием;

5. электрофизиологические методы:

а. электроэнцефалография – регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером;

б. регистрация биопотенциалов различных нервных центров; используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро;

в. метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков.

6. метод внутримозгового введения веществ с помощью микроинофореза;

7. хронорефлексометрия – определение времени рефлексов.
177. Суммация возбуждения в центральной нервной системе, ее виды и значение в рефлекторной деятельности.
В нервном волокне каждое одиночное раздражение (если оно не подпороговой и не свехпороговой силы) вызывает один импульс возбуждения. В нервных же центрах, как показал впервые И.М.Сеченов, одиночный импульс в афферентных волокнах обычно не вызывает возбуждения, т.е. не передается на эфферентные нейроны. Чтобы вызвать рефлекс необходимо быстрое нанесение допороговых раздражений одно за другим. Это явление получило название временной или последовательной суммации. Ее сущность состоит в следующем. Квант медиатора, выбрасываемого окончанием аксона при нанесении одного допорогового раздражения, слишком мал для того, чтобы вызвать возбуждающий постсинаптический потенциал, достаточный для критической деполяризации мембраны. Если же к одному и тому же синапсу идут быстро следующие один за другим допороговые импульсы, происходит суммирование квантов медиатора, и наконец его количество становится достаточным для возникновения возбуждающего постсинаптического потенциала, а затем и потенциала действия. Кроме суммации во времени, в нервных центрах возможна пространственная суммация. Она характеризуется тем, что если раздражать одно афферентное волокно раздражителем допороговой силы, то ответной реакции не будет, а если раздражать несколько афферентных волокон раздражителем той же допороговой силы, то возникает рефлекс, так как импульсы, приходящие с нескольких афферентных волокон суммируются в нервном центре.
178. Постсинаптическое торможение. Тормозные нейроны и синапсы.
Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового реф-кса на раздражение лапки серной кислотой. Затем на таламус (зрительные бугры) накладывал кристаллик поваренной соли и обнаружил, что время реф-кса значительно увеличивалось. Это свидетельствовало о торможении реф-кса. Сеченов сделал вывод, что вышележащие НЦ при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне действия другого более сильного раздражителя.

Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон – один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр.

Постсинаптическое торможение. Оно возникает в постсинаптической мембране сомы и дендритов нейронов, т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксосоматические синапсы специализированные тормозные нейроны. Эти синапсы являются глицинергическими. В результате воздействия глицина на глициновые хеморецепторы постсинаптической мембраны открываются ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается торможение постсинаптических потенциалов (ТПСП). Роль ионов хлора в развитии ТПСП небольшая. В результате возникающей гиперполяризации возбудимость нейрона падает. Проведение нервных импульсов через него прекращается. Алкалоид стрихнин может связываться с глициновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.
179. Пресинаптическое торможение в центральной нервной системе. Механизм возникновения и значение.

Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным. Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны. Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.
180. Механизмы координированной рефлекторной деятельности.

Рефлекторная реакция в большинстве случаев осуществляется не одной, а целой группой рефлекторных дуг и нервных центров. Координация рефлекторной деятельности – это такое взаимодействие нервных центров и проходящих по ним нервных импульсов, которое обеспечивает согласованную деятельность органов и систем организма. Она осуществляется с помощью следующих процессов:

1. Временное и пространственное облегчение. Это усиление рефлекторной реакции при действии ряда последовательных раздражителей или одновременном их воздействии на несколько рецептивных полей. Объясняется явлением суммации в нервных центрах.

2. Окклюзия – явление противоположное облегчению. Когда рефлекторная реакция на два или более сверхпороговых раздражителя меньше, чем ответы на их раздельное воздействие. Оно связано с конвергенцией нескольких возбуждающих импульсов на одном нейроне.

3. Принцип общего конечного пути. Разработан Ч. Шеррингтоном. В основе его лежит явление конвергенции. Согласно этому принципу на одном эфферентном мотонейроне могут образовывать синапсы нескольких афферентных, входящих в несколько рефлекторных дуг. Этот нейрон называется общим конечным путем и участвует в нескольких рефлекторных реакциях. Если взаимодействие этих реф-ксов приводит к усилению общей рефлекторной реакции, такие реф-ксы называются союзными. Если же между афферентными сигналами происходит борьба за мотонейрон – конечный путь, то антагонистическими. В результате этой борьбы второстепенные реф-ксы ослабляются, а жизненно важным освобождается общий конечный путь.

4. Реципрокное торможение. Обнаружено Ч. Шеррингтоном. Это явление торможения одного центра в результате возбуждения другого. Т.е. в этом случае тормозится антагонистический центр. Например, при возбуждении центров сгибания левой ноги, по реципрокному механизму тормозятся центры мышц разгибателей этой же ноги и центры сгибателей правой. В реципрокных взаимоотношениях находятся центры вдоха и выдоха продолговатого мозга, центры сна и бодрствования и т.д.

5. Принцип доминанты. Открыт А.А. Ухтомским. Доминанта – это преобладающий очаг возбуждения в ЦНС, подчиняющий себе другие НЦ. Доминантный центр обеспечивает комплекс реф-ксов, которые необходимы в данный момент для достижения определенной цели. При некоторых условиях возникают питьевая, пищевая, оборонительная, половая и др. доминанты. Свойствами доминантного очага являются повышенная возбудимость, стойкость возбуждения, высокая способность к суммации, инертность. Эти свойства обусловлены явлениями облегчения, иррадиации, с одновременным повышением активности вставочных тормозных нейронов, которые тормозят нейроны других центров.

6. Принцип обратной афферентации. Результаты рефлекторного акта воспринимаются нейронами обратной афферентации и информация от них поступает обратно в нервный центр. Там они сравниваются с параметрами возбуждения и рефлекторная реакция корректируется.
181. Сухожильные рефлексы. Рецепторы, афферентные волокна, нервные центры.
Все реф-ксы спинного мозга делятся на соматические (двигательные) и вегетативные. Соматические реф-ксы делятся на сухожильные (миостатические) и кожные. Сухожильные реф-ксы возникают при механическом раздражении мышц и сухожилий. Их небольшое растяжение приводит к возбуждению рецепторов растяжения, затем сигналы от альфа-мотонейронов спинного мозга поступают к мышцам, последние сокращаются. Характерны в первую очередь для мышц-разгибателей. В клинике определяют коленный, ахиллов, локтевой, кистевой и др. реф-ксы. Коленный реф-кс имеет моносинаптический характер, т.е. в его центральной части имеется один синапс. Кожные реф-ксы обусловлены раздражением рецепторов кожи, но проявляются двигательными реакциями. Ими являются подошвенный и брюшной. Спинальные нервные центры находятся под контролем вышележащих НЦ. Поэтому после перерезки между продолговатым и спинным мозгом возникает спинальный шок и тонус всех мышц значительно уменьшается.

Вегетативные реф-ксы спинного мозга делятся на симпатические и парасимпатические. Те и другие проявляются реакцией внутренних органов на раздражение рецепторов кожи, внутренних органов, мышц. Вегетативные нейроны спинного мозга образуют низшие центры регуляции тонуса сосудов, сердечной деятельности, просвета бронхов, потоотделения, мочевыведения, дефекации, эрекции, эякуляции и т.д.
182. Структурные и функциональные особенности соматической и вегетативной нервной системы. Симпатическая нервная система. Ее влияние на органы.

Все функции организма условно делят на соматические и вегетативные. Первые связаны с деятельностью мышечной системы, вторые выполняются внутренними органами, кровеносными сосудами, кровью, железами внутренней секреции и т.д. Однако это деление условно, так как такая вегетативная f, как обмен веществ, присуща скелетным мышцам. С другой стороны, двигательная активность сопровождается изменением функций внутренних органов, сосудов, желез.

Вегетативной нервной системой (ВНС) называют совокупность нервных клеток спинного, головного мозга и вегетативных ганглиев, которые иннервируют внутренние органы и сосуды.

Дуга вегетативного реф-кса отличается тем, что ее эфферентное звено имеет двухнейронное строение. Т.е. от тела первого эфферентного нейрона, расположенного в ЦНС, идет преганглионарное волокно, которое заканчивается на нейронах вегетативного ганглия, расположенного вне ЦНС. От этого второго эфферентного нейрона идет постганглионарное волокно к исполнительному органу. Нервные импульсы по вегетативным рефлекторным дугам распространяются значительно медленнее, чем по соматическим. Во-первых, это обусловлено тем, что даже простейший вегетативный реф-кс является полисинаптическим, а большинство вегетативных нервных центров включает огромное количество нейронов и синапсов. Во-вторых, преганглионарные волокна относятся к группе "В", а постганглионарные – "С". Скорость проведения возбуждения по ним наименьшая. Все вегетативные нервы имеют значительно меньшую избирательность (напр., n. vagus), чем соматические.

Вегетативная нервная система делится на 2 отдела: симпатический и парасимпатический. Тела преганглионарных симпатических нейронов лежат в боковых рогах грудных и поясничных сегментов спинного мозга. Аксоны этих нейронов выходят в составе передних корешков и оканчиваются в паравертебральных ганглиях симпатических цепочек. От ганглиев идут постганглионарные волокна, иннервирующие гладкие мышцы органов и сосудов головы, грудной, брюшной полостей малого таза, а также пищеварительные железы. Существует симпатическая иннервация не только артерий и вен, но и артериол. В целом f симпатической нервной системы.состоит в мобилизации энергетических ресурсов организма за счет процессов диссимиляции, повышении его активности, в том числе и нервной системы.

Тела преганглионарных парасимпатических нейронов находятся в сакральном отделе спинного мозга, продолговатом и среднем мозге в области ядер III, VII, IX и Х пар черепно-мозговых нервов. Идущие от них преганглионарные волокна заканчиваются на нейронах парасимпатических ганглиев. Они расположены около иннервируемых органов (параорганно) или в их толще (интрамурально). Поэтому постганглионарные волокна очень короткие. Парасимпатические нервы, начинающиеся от стволовых центров, также иннервируют органы и небольшое количество сосудов головы, шеи, а также сердце, легкие, гладкие мышцы и железы ЖКТ. В ЦНС парасимпатических окончаний нет. Нервы, идущие от крестцовых сегментов, иннервируют тазовые органы и сосуды. Общей функцией парасимпатического отдела является обеспечение восстановительных процессов в органах и тканях, за счет усиления ассимиляции. Таким образом, сохранение гомеостаза.

Высшие центры регуляции вегетативных функций находятся в гипоталамусе. Однако, на вегетативные центры влияет КБП. Это влияние опосредуется лимбической системой и центрами гипоталамуса. Многие внутренние органы имеют двойную, т.е. симпатическую и парасимпатическую иннервацию. Это сердце, органы ЖКТ, малого таза и др. В этом случае влияние отделов ВНС носит антагонистический характер. Например, симпатические нервы усиливают работу сердца, тормозят моторику органов пищеварения, сокращают сфинктеры выводных протоков пищеварительных желез и расслабляют мочевой пузырь. Парасимпатические нервы влияют на функции этих органов противоположным образом. Поэтому в физиологических условиях функциональное состояние этих органов определяется преобладанием влияния того или иного отдела ВНС. Однако для организма их воздействие является синергичным. Например, такая функциональная синергия возникает при возбуждении барорецепторов сосудов, когда повышается артериальное давление. В результате их возбуждения повышается активность парасимпатических и снижается симпатических центров. Парасимпатические нервы уменьшают частоту и силу сердечных сокращений, а торможение симпатических центров приводит к расслаблению сосудов. Артериальное давление снижается до нормы. Во многих органах, имеющих двойную вегетативную иннервацию, постоянно преобладают регуляторные влияния парасимпатической нервной системы. Это железистые клетки ЖКТ, мочевой пузырь и др. Есть органы, имеющие только одну иннервацию. Например, большинство сосудов иннервируется только симпатическими нервами, которые постоянно поддерживают их в суженном состоянии, т.е. тонусе.



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 163; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.96.61 (0.05 с.)