Нейpогенная регуляция кровоснабжения Головного мозга 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нейpогенная регуляция кровоснабжения Головного мозга



Нейpогенная регуляция сосудов головного мозга менее эффективна, чем метаболическая. Основной зоной приложения нейрогенных влияний являются мелкие артериальные мозговые сосуды, диаметром до 25-30 мкм. Венозная часть сосудистой системы мозга иннервирована значительно слабее, чем артериальная. Среди нервных волокон, обеспечивающих регуляцию тонуса мозговых сосудов, доказано существование адренергических, холинергических, серотонинергических и пептилгргических волокон. Нервные влияния на стенку сосудов мозга опосредуются через а- и В-адренорецепторы (норадреналин), М-холинорецепторы (ацетилхолин, вазоинтестинальный пептид), D-рецепторы (серотонин).

Основной источник нервных влияний на сосуды мозга — постганглионарные симпатические волокна, начинающиеся в верхних шейных ганглиях. Показано, что интенсивная электрическая стимуляция симпатических нервов приводит к повышению сопротивления мозговых сосудов лишь на 6-8%. Существование парасимпатических влияний на мозговые сосуды не доказано. Получены данные о Прямой адренергической иннервации мелких мозговых сосудов и сосудов виллизиева круга от ядер голубого пятна, а также серотонинергической и пептидергической иннервации магистральных и внутримозговых артерий от ядер шва.

Нейрогенные влияния на кровоснабжение мозга во многом зависят от выраженности ауторегуляции, исходного тонуса сосудов, напряжения СО2, О2, состава и концентрации ионов, присутствия биологически активных веществ в спинномозговой жидкости и Тканях мозга. Именно поэтому, конечный эффект нейрогенных влияний на мозговой кровоток не является однозначным.

83. Особенности кровоснабжения плода.

Обогащенная кислородом и питательными веществами артериальная кровь поступает из плаценты матери в пупочную вену, которая входит в тело плода в области пупка и направляется вверх к печени, ложась в ее левую продольную борозду. На уровне ворот печени v. umbilicalis делится на две ветви, из которых одна тотчас впадает в воротную вену, а другая, называемая ductus venosus, проходит по нижней поверхности печени до ее заднего края, где впадает в ствол нижней полой вены.

Тот факт, что одна из ветвей пупочной вены доставляет печени через воротную вену чистую артериальную кровь, обусловливает относительно большую величину печени; последнее обстоятельство связано с необходимой для развивающегося организма функцией кроветворения печени, которая преобладает у плода и уменьшается после рождения. Пройдя через печень, кровь по печеночным венам вливается в нижнюю полую вену.

Смешанная (артериальная и венозная) кровь по нижней полой вене течет в правое предсердие. Из правого предсердия она направляется заслонкой нижней полой вены, valvula venae cavae iпferioris, через foramen

В правое предсердие впадают, кроме нижней полой вены, еще верхняя полая вена и венозный (венечный) синус сердца. Венозная кровь, поступающая в верхнюю полую вену от верхней половины тела, далее попадает в правый желудочек, а из последнего в легочный ствол. Однако, вследствие того что легкие еше не функционируют как дыхательный орган, только незначительная часть крови поступает в паренхиму легких и оттуда по легочным венам в левое предсердие. Большая часть крови из легочного ствола по ductus arteriosus переходит в нисходящую аорту и оттуда к внутренностям и нижним конечностям. Таким образом, несмотря на то что вообще по сосудам плода течет смешанная кровь (за исключением v. umbilicalis и ductus venosus до его впадения в нижнюю полую вену), качество ее ниже места впадения ductus arteriosus значительно ухудшается.

Следовательно, верхняя часть тела (голова) получает кровь, более богатую кислородом и питательными веществами. Нижняя же половина тела питается хуже, чем верхняя, и отстает в своем развитии. Этим объясняются относительно малые размеры таза и нижних конечностей новорожденного.

84. Изменения в системе кровообращения после рождения.

При рождении происходит резкий переход от плацентарного кровообращения к легочному. При первом вдохе и растяжении легких воздухом легочные сосуды сильно расширяются и наполняются кровью. Тогда duсtus аrtеriosus спадается и в течение первых 8 - 10 дней облитерируется, превращаясь в lig. аrtеriosum. Пупочные артерии зарастают в течение первых 2 - 3 дней жизни, пупочная вена - несколько позднее (6 - 7 дней). Поступление крови из правого предсердия в левое через овальное отверстие прекращается тотчас после рождения, так как левое предсердие наполняется кровью, поступающей сюда из легких, и различие в давлении крови между правым и левым предсердиями выравнивается. Закрытие овального отверстия происходит значительно позднее, чем облитерация duсtus аrtеriosus, и часто отверстие сохраняется в течение первого года жизни, а в 1/3 случаев - всю жизнь

ovale (расположено в перегородке предсердий) в левое предсердие. Из левого предсердия смешанная кровь попадает в левый желудочек, затем в аорту, минуя не функционирующий еще легочный круг кровообращения.

85. Кровообращение при физической нагрузке.+ ВОПРОС 58

Последовательность включения сердечно-сосудистой системы во время физического труда можно проследить при интенсивной нагрузке. Мышцы сокращаются под влиянием импульсов, идущих пирамидными путями, которые начинаются в прецентральной закрутке. Спускаясь к мышцам, они рядом с моторными отделами ЦНС возбуждающих также дыхательные и вазомоторные центры продолговатого мозга. Отсюда через симпатическую нервную систему усиливается деятельность сердца и сужаются сосуды. Одновременно с надпочечников в кровоток выбрасываются катехоламины, которые сужают сосуды. В функционирующих мышцах сосуды, наоборот, резко расширяются. Это происходит главным образом за счет накопления метаболитов, таких, как Н +, СОТ, К +»аденозин подобное. Вследствие этого возникает Перераспределительная реакция кровотока: чем больше количество мышц сокращается, тем больше крови, выброшенной сердцем, поступает к ним. В связи с тем, что для обеспечения повышенной потребности в крови функционирующих мышц предыдущего МОК уже не достаточно, быстро повышается деятельность сердца. При этом МОК может увеличиваться в 5-6 раз и достигать 20-ЗО л / мин. Из этого объема до 80-85% поступает в функционирующих скелетных мышц. Если в состоянии покоя через мышцы проходит 0,9-1,0 л / мин (15-20% от МОК в 5 л / мин) крови, то при сокращении мышцы могут получать до 20 л / мин и более.
При этом именно сокращение мышц также влияет на кровоток. При интенсивном сокращении результате сдавления сосудов доступ крови к мышцам уменьшается но при расслаблении быстро увеличивается. При меньшей силе сокращение доступ крови увеличивается во время фазы как сокращение, так и расслабление. Кроме того, сокращенные мышцы выдавливают кровь венозного отдела, с одной стороны, сопровождается увеличением венозного возврата к сердцу, а с другой - создаются предпосылки для увеличения доступа крови к мышцам во время фазы расслабления.
Интенсификация деятельности сердца при мышечном сокращении происходит на фоне пропорционального усиления кровотока через коронарные сосуды. Автономная регуляция обеспечивает сохранение мозгового кровотока на прежнем уровне. Кровоснабжение других органов зависит от нагрузки. Если мышечная нагрузка интенсивное, то, несмотря на рост МОК, доступ крови к многих внутренних органов может ухудшаться. Это происходит вследствие резкого сокращения приносящих артерий под влиянием симпатических сосудосуживающих импульсов. Развитая Перераспределительная реакция может быть выражена в такой степени, что, например, вследствие снижения почечного кровотока почти полностью прекращается сечотворення.
Рост МОК приводит к увеличению Рс. Рд за счет расширения сосудов мышц может оставаться прежним или даже снижаться. Если уменьшение бпору сосудистого отдела скелетных мышц не компенсирует сужение других сосудистых зон, то возрастает Рд.
Во время физической нагрузки возбуждению сосудодвигательный нейронов способствуют также импульсы с проприорецепторов мышц, хеморецепторов сосудов. Наряду с этим при мышечной работе в регуляции кровотока принимает участие адреналовая система надпочечников. Во время работы включаются и другие гормональные механизмы регуляции кровотока (вазопрессин, тироксин, ренин, предсердный натрийуретический гормон).
Во время мышечной работы «отменяются» рефлексы, контролирующие AT в состоянии покоя. Несмотря на увеличение AT, рефлексы с барорецепторов не тормозят деятельность сердца. В таком случае преобладает влияние других регулирующих механизмов.
В функционирующих мышцах увеличения AT при расширении сосудов приводит и к изменениям условий водного обмена. Увеличение фильтрационного давления способствует задержке в тканях части жидкости. Это обуславливает рост гематокрита. Увеличение концентрации эритроцитов (иногда на 0, § "1012 / л) является одной из целесообразных реакций организма, поскольку при этом увеличивается кислородная емкость крови.

86. Механизмы, определяющие изменение артериального давления при физической нагрузке. СМОТРЕТЬ ВОПРОС 85 и 58

87. Механизмы срочной регуляции системной гемодинамики.

Механизмы быстрого реагирования: главная задача нервной (рефлекторной) регуляции – быстрое повышение давления при физической нагрузке и стрессе. Происходят следующие изменения гемодинамики: (1) сужение артериол во всех органах, кроме сердца, мозга, скелетных мышц, а также кожи (терморегуляция), (2) сужение вен – уменьшение емкости сосудистой системы, увеличение венозного возврата и сердечного выброса, (3) стимуляция сердечной деятельности симпатическими нервами сердца. (При этом возбуждение симпатических центров происходит с одновременным торможением парасимпатических центров). Эти механизмы могут увеличить системное АД в 2 раза за 5-10 секунд (!).
(И наоборот, торможение симпатических центров может уменьшить системное АД в 2 раза за 10-40 секунд).
В рефлекторной регуляции системного АД участвуют следующие рефлексогенные зоны:
(1) барорецепторы дуги аорты и синокаротидной зоны (смотри выше «Сосудодвигательный центр»), а также барорецепторы легочной артерии (рефлекс Парина). При повышении АД в этих трех зонах происходит торможение работы сердца (n.Vagus) и расширение сосудов большого круга кровообращения (депрессорный рефлекс). Рефлекс Парина препятствует развитию отека легких.
(2) хеморецепторы аортальной и синокаротидной зон (смотри выше «Сосудодвигательный центр»). При повышении рСО2, снижении рН и рО2 происходит сужение сосудов большого круга кровообращения (прессорный рефлекс).
(3) барорецепторы коронарных артерий (артерий сердца) – прессорный рефлекс
(4) рецепторы растяжения полых вен и правого предсердия. При увеличении объема притекающей крови происходит увеличение частоты сердечных сокращений на 75% (рефлекс Бейнбриджа)
(5) рецепторы растяжения левого предсердия. При увеличении давления крови в левом предсердии происходит сужение артерий и артериол малого круга кровообращения (рефлекс Китаева). Рефлекс препятствует развитию отека легких.
(6) рецепторы растяжения предсердий (волюморецепторы). При увеличении объема притекающей крови происходит уменьшение секреции антидиуретического гормона (АДГ) нейронами гипоталамуса, почки выделяют больше мочи (нейро-эндокринный рефлекс Генри-Гауэра).
(О сопряженных рефлексах смотри учебник В.М.Смирнова, стр.324)
Реакция ЦНС на ишемию. В условиях недостаточности кровоснабжения и гипоксии мозга в тканях мозга накапливается СО2 и происходит возбуждение ретикулярной формации ствола мозга. Если среднее АД становится меньше 50 мм рт.ст,. нисходящие ретикуло-спинальные пути вызывают максимальное возбуждение спинальных симпатических центров, происходит усиление сердечной деятельности и мощное сужение сосудов всех органов и тканей (скелетных мышц, кожи, органов брюшной полости, включая почки) – чтобы поддержать давление и кровоток на участке «сердце – мозг». Кроме того, вовлекаются все имеющиеся механизмы для увеличения АД (катехоламины, вазопрессин, ангиотензин). В этих условиях АД за 10 минут может увеличиться до 250 мм рт.ст. Если ишемия мозга продолжается долго, через 20-60 минут функция нейронов прекращается, АД падает до 40-50 мм рт.ст и ниже, наступает смерть.
Реакция АД на повышение внутричерепного давления (Кушинг-реакция). Если ВЧД повышается и становится больше, чем АД, артерии на поверхности мозга сдавливаются и развивается ишемия мозга. Реакция мозга на ишемию приводит к повышению АД, но при этом ВЧД увеличивается еще больше и т.д.(регуляция по принципу положительной обратной связи, «порочный круг»).
Механизмы небыстрого реагирования. К ним относятся миогенные и гуморальные механизмы (смотри выше). Кроме того, подключается еще один механизм – переход жидкости через стенку капилляра, что приводит к изменеию объема циркулирующей крови. Например, при снижении системного АД артериолы рефлекторно суживаются и давление крови в капиллярах уменьшается. Это приводит к уменьшению фильтрации жидкости из капилляров в межклеточное пространство и наоборот – к увеличению реабсорбции жидкости из межклеточного пространства в капилляры (объем крови в сосудистой системе увеличивается за счет межклеточной жидкости). При повышении системного АД артериолы рефлекторно расширяются, давление крови в капиллярах увеличивается и происходит усиленная фильтрация жидкости из капилляров в межклеточное пространство (объем крови в сосудистой системе временно уменьшается).

88. Механизмы долговременной регуляции системной гемодинамики.

Механизмы медленного реагирования. К ним относится способность почек регулировать объем жидкости в организме за счет выведения или задержки воды и солей (т.е. за счет конценрирования или разведения мочи). В основе этого механизма лежат особенности функций (а) корковых и (б) юкстамедуллярных нефронов почек (смотри «Физиологию почек»). От объема жидкости в организме зависит объем циркулирующей крови, от ОЦК зависит венозный возврат к сердцу, от ВВ зависит работа сердца, а, следовательно, и системное АД. Этот механизм очень надежный, но очень медленный. Его усиливают и ускоряют гормоны: (1) антидиуретический гормон (реабсорбция воды в почках, увеличение ОЦК), (2) альдостерон (реабсорбция натрия и воды в почках, увеличение ОЦК) и (3) предсердный натрийуретический гормон ПНГ (выделение натрия и воды почками, уменьшение ОЦК).
Примечание: Мощные механизмы регуляции системного АД направлены, главным образом, на увеличение АД. Понижают системное АД только (1) барорецептивный рефлекторный механизм (но он краткосрочный, быстро адаптирующийся (1-2 дня) к новому более высокому уровню АД) и (2) почечный механизм уменьшения ОЦК (но он очень медленный, долгосрочный).

89. Собственные и сопряженные кардиальные рефлексы.

Выделены три категории кардиальных рефлексов: собственные, вызываемые раздражением рецепторов сердечно-сосудистой системы; сопряженные, обусловленные активностью любых других рефлексогенных зон; неспецифические, которые воспроизводятся в ответ на неспецифические влияния (в условиях физиологического эксперимента, а также в патологии). Наибольшее физиологическое значение имеют собственные рефлексы сердечно-сосудистой системы, которые возникают чаще всего при раздражении барорецепторов магистральных артерий в результате изменения системного давления. Так, при повышении давления в аорте и каротидном синусе происходит рефлекторное урежение частоты сердцебиения. Особую группу собственных кардиальных рефлексов представляют те из них, которые возникают в ответ на раздражение артериальных хемо-рецепторов изменением напряжения кислорода в крови. В условиях гипоксемии развивается рефлекторная тахикардия, а при дыхании чистым кислородом — брадикардия. Эти реакции отличаются исключительно высокой чувствительностью: у человека увеличение частоты сердцебиений наблюдается уже при снижении напряжения кислорода всего на 3 %, когда никаких признаков гипоксии в организме обнаружить еще невозможно.

Собственные рефлексы сердца проявляются и в ответ на механическое раздражение сердечных камер, в стенках которых находится большое количество барорецепторов. К их числу относят рефлекс Бейнбриджа, проявляющийся в виде тахикардии в ответ на быстрое внутривенное введение определенного объема крови. Считается, что эта реакция сердца является рефлекторным ответом на раздражение барорецепторов полых вен и предсердия, поскольку она устраняется при денервации сердца. Отрицательные хронотропные и инотропные реакции сердца рефлекторной природы возникают в ответ на раздражение механорецепторов как правых, так и левых отделов сердца. Значение интракардиальных рефлексов состоит в том, что увеличение исходной длины волокон миокарда приводит к усилению сокращений не только растягиваемого отдела сердца (в соответствии с законом Франка—Старлинга), но и к усилению сокращений других отделов сердца, не подвергающихся растяжению.

Собственные кардиальные рефлексы составляют основу нейрогенной регуляции деятельности сердца, хотя реализация его насосной функции возможна без участия нервной системы. Сопряженные кардиальные рефлексы представляют собой эффекты раздражения рефлексогенных зон, не принимающих прямого участия в регуляции кровообращения. К числу таких рефлексов относят рефлекс Гольца, который проявляется в форме брадикардии (до полной остановки сердца) в ответ на раздражение механорецепторов брюшины или органов брюшной полости. Возможность проявления такой реакции учитывается при проведении оперативных вмешательств на брюшной полости, при нокауте у боксеров и т. д. При раздражении некоторых экстерорецепторов (резкое охлаждение кожи области живота) может иметь место рефлекторная остановка сердца. Именно такую природу имеют несчастные случаи при нырянии в холодную воду. Сопряженным соматовисцеральным кардиальным рефлексом является рефлекс Данини—Ашнера, который проявляется в виде брадикардии при надавливании на глазные яблоки. Таким образом, сопряженные рефлексы сердца, не являясь составной частью общей схемы нейрогенной регуляции, могут оказывать влияние на его деятельность.


90. Функциональные нарушения ритма и проводимости сердца.

нарушение ритма сердца и проводимости – изменение нормальной очередности сокращений сердца, связанное с расстройством функций автоматизма, сократимости, возбудимости и проводимости.

Нарушение ритма сердца или аритмия, проявляется в изменении частоты и силы сердечных сокращений, в возникновении внеочередных сокращений, в изменении последовательности возбуждения и сокращения предсердий и желудочков сердца.

Нормальную сократительную работу сердца обеспечивает его проводящая система.Генерировать импульсы могут все элементы проводящей системы, но ведущая роль принадлежит синусовому узлу – водителю ритма.

Нарушение ритма сердца и проводимости представляет собой:

· Сбой в функционировании синусового узла:

o тахикардия – учащение сердечного ритма;

o брадикардия – замедление сердечного ритма.

· Синдром слабости синусового узла (при котором тахикардия сменяется брадикардией)

· Нарушение внутрижелудочковой проводимости, проводимости импульсов внутри предсердий, а также проводимости от предсердий к желудочкам:

o внутрипредсердные блокады;

o блокады ножек пучка Гиса;

o АВ-блокады.

· Возникновение дополнительных, помимо синусового узла, очагов, дающих импульсы к сокращению сердца

· Появление дополнительных пучков для проведения импульсов.

Аритмии классифицируются по локализации нарушения проводимости сердца, по степени поражения сердечной функции и по клиническим проявлениям.

Нарушение ритма сердца может быть вызвано различными заболеваниями и внесердечными причинами, среди которых:


91. Факторы, обеспечивающие движение крови по сосудам. Линейная и объемная скорость кровотока.

основной фактор, обеспечивающий движение крови по сосудам: работа сердца как насоса.

Вспомогательные факторы:

1. замкнутость сердечно-сосудистой системы;

2. разность давления в аорте и полых венах;

3. эластичность сосудистой стенки (превращение пульсирующего выброса крогви из сердца в непрерывный кровоток);

4. клапанный аппарат сердца и сосудов, обеспечивающий однонаправленное движение крови;

5. наличие внутригрудного давления - "присасывающее" действие, обеспечивающее венозный возврат крови к сердцу.

Работа мышц - проталкивание крови и рефлекторное увеличение активности сердца и сосудов в результате активации симпатической нервной системы.

Активность дыхательной системы: чем чаще и глубже дыхание, тем больше выражено присасывающее действие грудной клетки.

Различают линейную и объемную скорость кровотока. Линейная скорость кровотока (Vлин.) это расстояние, которое проходит частица крови в единицу времени. Она зависит от суммарной площади поперечного сечения всех сосудов, образующих участок сосудистого русла. Поэтому в кровеносной системе наиболее узким участком является аорта. Здесь наибольшая линейная скорость кровотока, составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек. Суммарный просвет капиллярного русла в 500-600 раз больше чем аорты. Поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен. В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0,2 м/сек. Линейная скорость кровотока в артериях измеряется ультразвуковым методом. Он основан на эффекте Доплера. На сосуд помещают датчик с источником и приемником ультразвука. В движущейся среде – крови частота ультразвуковых колебаний изменяется. Чем больше скорость течения крови по сосуду, тем ниже частота отраженных ультразвуковых волн. Скорость кровотока в капиллярах измеряется под микроскопом с делениями в окуляре, путем наблюдения за движением определенного эритроцита.

Объемная скорость кровотока (Vоб.) это количество крови, проходящей через поперечное сечение сосуда в единицу времени. Она зависит от разности давлений в начале и конце сосуда и сопротивления току крови.


92. Изменения объема циркулирующей крови и их физиологическое значение.

Увеличение общего объема крови называется полнокровием – гиперволемией.

1.простая гпперволемия с нормальным соотношением плазмы и эритроцитов - встречается очень редко. В течение короткого времени она может возникать вслед за переливанием больших количеств крови, а также в начале усиленной работы или при высокой температуре окружающей среды, когда происходит выбрасывание в общее кровеносное русло крови из селезенки и поступление жидкости из тканей.

В результате усиленной транссудации плазмы в ткани и серозные полости вскоре наступает сгущение крови, большой распад эритроцитов и ослабление сердечной деятельности.

2. гиперволемия полицитемическая - с преимущественным увеличением количества эритроцитов и отставанием нарастания гемоглобина сравнительно с нарастанием количества красных кровяных телец..характеризуется усилением кровотворения, признаки которого можно обнаружить в костном мозгу, селезенке и других кровотворных органах, например при истинной полицитемии или эритремии. Кроме увеличения количества эритроцитов, при истинной полицитемии вследствие увеличения объема крови нередко обнаруживается гиперемия покровов, повышение кровяного давления, гипертрофия левого желудочка, выбрасывающего с каждой систолой больший объем крови в аорту.

Полицитемическая гиперволемия встречается также при горной болезни, некоторых заболеваниях легких и сердца, что связано с нарастанием гипоксемии и раздражением кровотворных орагнов.

3. гиперволемия олигоцитемическая, или гидремическая плетора, с преимущественным увеличением плазмы. Она может возникнуть от задержки воды в кровеносном русле при некоторых заболеваниях почек, кровотворной системы и нарушениях водного обмена.

Уменьшение общего объема крови - олигемия, или гиповолемия,- в чистой форме может быть весьма кратковременным. Гиповолемия чаще всего сопровождается уменьшением количества и изменением качества эритроцитов.

1. простая гиповолемия с нормальным соотношением плазмы и эритроцитов - наблюдается непосредственно послеострых кровопотерь. Острые кровопотери могут происходить от ранений крупных сосудов или кровотечений при язвенной болезни, при активной форме туберкулеза легких или от разрыва фаллопиевых труб.

Для здорового организма величина смертельного кровотечения, если оно происходит сразу, равна 50 - 60% количества крови. При таком кровотечении восстановление массы крови естественным путем становится невозможным, наступают понижение артериального давления, кислородное голодание (гипоксия), расстройства дыхания, шок и явления асфиксии. При этом наблюдаются недостаток кислорода в крови (гипоксемия), резкая бледность покровов, все нарастающее угнетение функции дыхательного и сосудодвигательного центров, ослабление сердечной деятельности; пульс становится нитевидным. Вследствие острого кислородного голодания, в частности ткани головного мозга, наступают возбуждение двигательной зоны мозговой коры и судороги. Чем быстрее произошло кровотечение, тем сильнее выражены эти явления. Организм может погибнуть при явлениях значительного падения кровяного давления, понижения температуры тела и наступающего паралича дыхательного центра. Повторные небольшие кровопотери могут вызывать медленное развитие гиповолемии.

Одновременно с расстройством ряда жизненно важных функций кровопотеря влечет за собой мобилизацию приспособительныхзащитно-физиологических механизмов, при помощи которых возможно восстановление кровяного давления, объема и функции крови.

2. - уменьшение объема крови за счет уменьшения плазмы - гиповолемия пoлицитемическая, или ангидремия, - характеризуется заметным сгущением и повышением вязкости крови.

Ангидремия наблюдается в связи со значительной потерей организмом воды, например при холере, дизентерии, детском поносе, упорной рвоте, обширных ожогах вследствие обильной потери жидкости с экссудатом, а также испарения воды с поверхности ожога.

3. уменьшение объема крови преимущественно за счет эритроцитов - гиповолемия олигоцитемическая. Она наблюдается вслед за кровопотерей, при усиленном поступлении жидкости из тканей в сосудистую систему, а также при некоторых анемиях, например при злокачественном малокровии.


93. Влияние газового состава крови на кровообращение.

 

4. Физиология дыхания
94. Дыхательные мышцы. Главные и дополнительные. Влияние их сокращения на объем грудной полости.
95. Эластическая тяга легких. Значение сурфактанта. Измерение растяжимости легких.
96. Давление в полости легких при вдохе и выдохе. Причины изменений и значение.
97. Давление в плевральной полости. Изменения при спокойном и глубоком дыхании. Транспульмональное давление.
98. Характеристика легочных объемов. Методы измерения. Мертвое пространство дыхательной системы, его значение.
99. Альвеолярный воздух, его состав, методика определения. Причины и значение относительного постоянства состава.
100. Вентиляционно-перфузионное отношение. Особенности вентиляции и перфузии в различных отделах легких.
101. Газообмен в легких. Диффузионная способность легких. Значение физически растворенных О2 и СО2 крови.
102. Кривая диссоциации оксигемоглобина. Значение крутой и отлогой ее частей. Факторы, влияющие на ход кривой.
103. Перенос СО2 кровью. Образование бикарбонатов и карбаминогемоглобина. Значение карбоангидразы.
104. Газообмен между кровью и тканями.
105. Дыхательный центр (бульбо-понтинный дыхательный механизм). Современные представления о его структуре и связях.
106. Основные скопления дыхательных нейронов продолговатого мозга. Их связи и значение.
107. Рецепторы легких. Их значение в регуляции дыхания.
108. Значение центральных и периферических хеморецепторов в регуляции дыхания.
109. Особенности регуляции дыхания во время сна и бодрствования.
110. Регуляция дыхания при мышечной работе.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 65; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.12.47 (0.052 с.)