Концепция PLM (Product Lifecycle Management ), 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Концепция PLM (Product Lifecycle Management ),



Под PLM понимают процесс управления информацией об изделии на протяжении всего его жизненного цикла— начиная с маркетинговых исследований, проектирования изделий, планирования и управления производством, заканчивая поддержкой и утилизацией продукта, и позволяет координировать отдельные этапы жизненного цикла продукта).

Отметим, что понятие PLM-система трактуется двояко: либо как интегрированная совокупность автоматизированных систем CAE/CAD/CAM/PDM и ERP/CRM/SCM, либо как совокупность только средств информационной поддержки изделия и интегрирования автоматизированных систем предприятия, что практически совпадает с определением понятия CALS.

 

Можно ещё встретить различные определения PLM. Согласно определению IBM, PLM — это технология, позволяющая прдприятию управлять продуктами на всех этапах его жизненного цикла, начиная от стадии разработки концепции и заканчивая выводом из эксплуатации. Аналитики компании CIMdata, специализирующейся на анализе мирового рынка PLM, определяют технологию как стратегический подход, который позволяет с помощью набора бизнес-решений поддерживать совместную разработку, менеджмент, распространение и использование информации о продукте, управление информацией на протяжении всего жизненного цикла — от концепции до утилизации.

 

Основными функциональными подсистемами системы PLM являются следующие:

- Управление инженерными данными (PDM);

- Управление проектом (Project Management);

- Управление процессами производства (MPM);

- Управление взаимодействием с внешними организациями (SCM);

- Управление (вернее, сопровождение) требованиями и взаимодействием с Заказчиком (CRM + RqM);

- Управление - Автоматизация управления потоком работ (Workflow Management). [26]

Первыми начали внедрять PLM-системы крупные компании, занимающиеся автомобиле- и авиастроением: Boeing, Ford, Daimler Chrysler, Lockheed Martin, Toyota. В настоящее время система PLM функционирует на многих крупных промышленных предприятиях. Для внедрения PLM требуется интеграция уже работающих на предприятиях систем CAD, САМ, САЕ, ERP, SCM, WMS и др. Создание таких крупных интегративных решений требует целого комплекса внедрений и внутренних преобразований на предприятиях. Все системы управления являются гибкими, что позволяет настраивать их иод требования конкретного предприятия. https://studme.org/121115/informatika/sistemy_nepreryvnogo_upravleniya_zhiznennym_tsiklom_izdeliyaСистемы непрерывного управления жизненным циклом изделияКонцепция и системы управления непрерывным жизненным циклом изделия

Примеры PLM- систем

· PTC Windchill

· Dassault Systemes

· IBM PLM Solution

· SAP PLM

· Siemens A&D UGS PLM Software TeamCenter

· РМО: Управление жизненным циклом разработки новых продуктов - решение на базе Web-платформы "Офис Управления Проектами - РМО", связывает управление портфелем продуктов и управление проектами (разработчик Адванта Групп)

· Lotsia Software[26]

 

 

Рис Процессный состав Жизненного Цикла Изделия.

Рассмотрим содержание основных этапов жизненного цикла изделия (см. рис. 2.6 и 2.6.6.) и взаимодействие ИС в процессе управления жизненным циклом продукта.

 

 

Рис.. Основные этапы жизненного цикла изделия

Рис..Взаимосвязь CALS-технологий в ходе реализации ЖЦИ.

На этане маркетинговых исследований анализируется состояние рынка, прогнозируется спрос на различные виды изделий и развитие их технических характеристик. Этот этап жизненного цикла поддерживается системами управления взаимоотношениями с клиентами (CRM), которые позволяют собирать, обрабатывать и анализировать информацию о клиентах и выполненных для них заказах.

Этап разработки товара поддерживается САПР. В САПР промышленных предприятий выделяются автоматизированные системы расчетов и инженерного анализа (CAE), системы конструкторского (CAD) и технологического проектирования (САРР), автоматизированная система технологической подготовки производства (САМ).

В результате конструкторского проектирования создается объемная геометрическая модель изделия и выполняются различные виды инженерного анализа. Для создания объемной модели изделия конструктор может воспользоваться методами трехмерного твердотельного, поверхностного моделирования или сочетанием этих методов. В зависимости от функциональной полноты различные программные системы автоматизированного конструирования позволяют строить 2 D-модели изделий в виде чертежей и эскизов, геометрические ЗО-модели с помощью средств симуляции и визуализации.. Анализ в системе САЕ, как правило, проводится на основе упрощенной геометрической модели, созданной в системе CAD. Современные системы САЕ обеспечивают решение широкого спектра задач анализа линейной и нелинейной статики и динамики, устойчивости, акустики, теплопередачи, оптимизации конструкции, аэроупругости и многие другие, анализируя технические и экономические условия сборки будущего изделия.

На этапе подготовки производства решаются задачи разработки технологий изготовления изделия САРР, оснастки на основе их геометрических моделей, полученных на этапе проектирования, а также осуществляется подготовка программ для станков с ЧПУ по спроектированным технологиям.

Совокупность систем CAD, САЕ, САМ и САРР, между которыми налажен информационный обмен, образуют систему сквозного проектирования изделия и производства. С помощью совместного использования интернет-среды и VPD-технологий виртуальной разработки изделий проектировщики, расположенные в разных странах мира, эффективно взаимодействуют и практически «в реальном времени» работают совместно, выполняя одновременно компьютерное проектирование и моделирование, общую компоновку и проверку всех составляющих узлов нового высокотехнологического продукта-здесь мы имеем фактор параллельного проектирования в едином информационном пространстве.

В процессе совместного проектирования в ИС создается электронная модель изделия.

Наличие электронной модели производства изделий должно включать в себя не только технические параметры изделий, но и технологические и экономические параметры, связанные с подготовкой их производства и производством.

Таким образом формируется полная цифровая модель проектируемого изделия как единый источник знаний об изделии и процессах его изготовления, которая содержит конструкторскую (электронную модель изделия), технологическую (инженерную цифровую модель отработки технологий сборки и производства) и технико-экономическую модель производства и эксплуатации изделия..

Технологические данные об изделии, формируемые в процессе проектирования, необходимы как в системах управления производственными процессами (MES), так и в системах планирования и управления ресурсами предприятия (ERP), с помощью которых осуществляется управление реальным производством на основе поступающих заказов

Часть информации, присутствующей в электронной модели изделия, трансформируется в кодогенерируемые программы для исполнения производственных процессов на станках с ЧПУ. Информация о тестируемых характеристиках качества производимых изделий с уровня управления производственными процессами поступает к технологам и в систему комплексного управления качеством на предприятии (TQM), служит основанием для оперативного внесения изменений в конструкции изделия или технологию его изготовления.

На основе электронной цифровой модели получаются эксплуатационные данные об изделии, которые используются в процессе производства, они трансформируются в интерактивную электронную инструкцию о сборке, интерактивные электронные технические руководства (IETM), устанавливаемые на рабочих местах в производстве и передаваемые с помощью PDM-технологий на уровень MES-системы.

Информация о продукте, содержащаяся в PLM-системе, является цифровым макетом этого изделия и основой для принятия решения по всем этапам жизненного цикла продукта, начиная от выработки технических требований (технического задания) к изделию и обоснования технико-эксплуатационных показателей производства нового высокотехнологичного продукта. Цифровой макет — совокупность электронных документов, описывающих изделие, его создание и обслуживание, содержит электронные чертежи и (или) трехмерные модели изделия и его компонентов, чертежи и (или) модели необходимой оснастки для изготовления компонентов изделия, различную атрибутивную информацию по компонентам (номенклатура, вес, длина, особые параметры), технические требования, директивные документы, техническую, эксплуатационную и иную документацию.. Сердце PLM – интегрированная информационная модель. [26]

Таким образом PLM – систему можно рассматривать как промышленную систему информационного взаимодействия предприятия по управлению всеми данными об изделии и связанных с ним процессах на протяжении всего жизненного цикла изделия. И, поскольку PLM в таком определении, – это система для всего предприятия, то именно PLM является средой, в которой и решаются все задачи управления любой рабочей информации об изделии. А поскольку для решения таких задач в такой системе должен существовать свой набор приѐмов и методов такой работы, то PLM - это и особая технология работы с данными.

Что общего и в чём разница в системах PDM и PLM?

Системы управления цифровым определением изделия (старое название PDM=Product Data Management, новое, скорректированное название cPDM= common Product Definition Management) в качестве объекта так же, как и системы PLM, рассматривают цифровое описание разрабатываемого изделия. Однако, в отличие от PLM в системах PDM/cPDM рассматривается эволюция этого описания в пределах этапов «Проектирования» (ЭП+ТП+РП) –«Инженерного Анализа» -Технологической Подготовки Производства (ТПП). При этом этап ТПП - конечный по сути для всех систем PDM/cPDM – охватывает не все, а только отдельные процессы этапа ―Изготовление‖ в современной классификации ЖЦИ, приведѐнной выше. Именно работа инженеров-технологов по проработке технологий формообразования (проектирование штампов и пресс-форм, литьѐ, фрезерование, раскрой, сварка и т.д.) для деталей разрабатываемого изделия и является содержанием ТПП. Не более того. Как видно из такого краткого описания, системы PDM/cPDM полностью «поглощаются» и по структуре данных и по составу процессов системами PLM. Или, как обычно говорят, PDM – это подсистема системы PLM. [26]

Примечания: CRM (Customer Relationships Management) — управление взаимоотношениями с заказчиками;

IETM (Interactive Electronic Technical Manuals) — интерактивные электронные технические руководства;

SCADA (Supervisory Control and Data Acquisition) — диспетчерское управление и сбор данных;

TQM (Total Quality Management) — тотальное управление качеством; MES (Manufacturing Execution Systems) — производственная исполнительная система. MES (Manufacturing Execution Systems) — производственная исполнительная система;

CNC (Computer Numerical Control) — компьютерное ЧПУКоординация различных служб на производственном предприятии определяет необходимость координации информационных потоков с технологическими данными между различными контурами управления: проектно-технологическим, производственным и управленческим. Потоки технологических данных, циркулирующие на производственном предприятии, с применением технологий управления данными в интегрированных системах PLM и ERP, MES и нишевых (ЧПУ) производственных системах на основе единого информационного пространства, представлены на рис. 2.7.

 

Современные PLM-системы предлагают в высокотехнологические решения в области электронного документооборота и систем управления технологическими данными (PDM), которые создают единое информационное пространство на предприятии для конструкторов (CAD-системы), инженеров (САЕ), технологов (САМ), управленцев и проектировщиков будущего производства, работающих с симуляциями и ЗО-моделями, специалистов в области управления качеством (QM). Управление технологическими и другими данными (PDM) и архитектурные решения, выстроенные по моделям современного менеджмента, в таких системах обеспечивают взаимодействие с экономическим контуром на уровне ERP-, SCM-систем, с производственным контуром на уровне MES-систем (электронные инструкции и чертежи) и ЧПУ посредством кодогенерации, осуществляемой на основе электронного макета изделия, а также с системами управления и контроля качества (QM). Интеграция указанных систем на базе PDM-технологий, ставших кровеносной системой ИИСУ, позволяет сегодня стыковать и минимизировать временной разрыв между бизнес-процессами проектирования и производства, сократить риски, сроки разработки и вывода на рынок новых изделий, осуществлять эффективное управление проведением изменений.

 

ОБЗОР CALS-СТАНДАРТОВ [22]

       Одно из центральных мест в системе CALS-стандартов занимают стандарты, разработанные под эгидой Международной организации стандартизации ISO и получившие название STEP (Standard for Exchange of Product data) и номер 10303. Стандарты ISO 10303 определяют средства описания (моделирования) промышленных изделий на всех стадиях жизненного цикла. Проект STEP развивается с середины 80-х годов прошлого века.

    Единообразная форма описаний данных о промышленной продукции обеспечивается введением в STEP языка Express, инвариантного к приложениям. Первая версия стандарта ISO 10303-11, посвященного языку Express опубликована в 1990 г. В стандартах STEP использован ряд идей, ранее воплощенных в методиках информационного IDEF1X и функционального IDEF0 проектирования. Но роль стандартов STEP не ограничивается введением только грамматики единого языка обмена данными. В рамках STEP предпринята попытка создания единых информационных моделей целого ряда приложений. Эти модели получили название прикладных протоколов.

-     В качестве альтернативного языка для обмена геометрическими и техническими данными о промышленных изделиях может использоваться язык разметки XML. В 2004 г. компаниями Dassault Systèmes и Lattice Technology предложено подмножество 3D XML языка XML, которое получает все большую популярность для межсистемных обменов в CALS-технологиях.

    Стандарт ISO 10303 состоит из ряда документов (томов), в которых описываются основные принципы STEP, правила языка Express, даны методы его реализации, модели, ресурсы, как общие для приложений, так и некоторые специальные (например, геометрические и топологические модели, описание материалов, процедуры черчения, конечно-элементного анализа и т.п.), прикладные протоколы, отражающие специфику моделей в конкретных предметных областях, методы тестирования моделей и объектов.

Удовлетворению требований создания открытых систем в STEP уделяется основное внимание — специальный раздел посвящен правилам написания файлов обмена данными между разными системами, созданными в рамках STEP-технологии.

    Развитие CALS-технологий нашло выражение в разработке серий стандартов ISO 13584 Parts Library (сокращенно P-Lib), ISO 14959 Parametrics, ISO 15531 Manufacturing management data (Mandate), ISO 8879 Standard Generalized Markup Language (SGML). Разработка новых российских CALS-стандартов и изменений к стандартам ЕСКД должна быть увязана со стандартами и проектами стандартов серий ГОСТ Р ИСО 10303 и ГОСТ Р ИСО 13584, являющихся русскоязычными версиями стандартов ISO 10303 и ISO 13584.

Для оформления технической документации на создаваемые изделия в CALS-технологиях был рекомендован язык разметки SGML (Standard Generalized Markup Language). Этот язык представлен в семействе стандартов ISO 8879 и предназначен для унификации представления текстовой информации в автоматизированных системах.

    Стандарт SGML устанавливает такие множества символов и правил для представления информации, которые позволяют различным системам правильно распознавать и идентифицировать эту информацию. Названные множества описывают в отдельной части документа, называемой декларацией DTD (Document Type Decfinition), которую передают вместе с основным SGML-документом. В DTD указывают соответствие символов и их кодов, максимальные длины используемых идентификаторов, способ представления ограничителей для тегов, другие возможные соглашения, синтаксис DTD, а также тип и версию документа.

 

              Стандарт MIL-STD-1840C посвящен представлению и обмену данными в CALS-технологиях. Основные положения этого стандарта признаны в России и представлены в документе Р50.1.027-2001. Стандарт определяет международные, национальные, военные стандарты и спецификации для электронного обмена информацией между организациями или системами. В нем к стандартам и спецификациям технологий CALS отнесен ряд стандартов таких, как вышеназванные стандарты STEP, SGML, а также стандарты шифрования данных и электронной подписи, кодирования аудио и видео данных, спецификации MIME электронной почты и т.п.

В структуре документа выделяют реквизитную и содержательную части. В реквизитной части записываются метаданные в виде списка идентификаторов атрибутов и их значений, а также сведения об электронных подписях документа. Содержательная часть состоит из одного или более блоков данных, каждый блок имеет собственно передаваемые данные и их описание.

    Электронная цифровая подпись (ЭЦП) представляет собой хэш-функцию передаваемого документа, закодированную составителем документа закрытым ключом по асимметричной схеме. Прочитать ЭЦП можно с помощью открытого ключа, но подделать подпись, не зная закрытого ключа, практически нельзя.

    Для унификации структуры документов и правил деловой переписки прежде всего в торговых операциях Организация Объединенных Наций приняла в 1986 г. спецификации EDIFACT (Electronic Data Interchange For Administration, Commerce and Transport). Это международный стандарт (ISO 9735) для представления и обмена электронными данными, которые могут группироваться в сегменты, смысл которых частично описан в стандарте, но может быть обусловлен договоренностью между партнерами.

    Особенности проектирования радиоэлектронной аппаратуры находят отражение и в форматах обмена данными. Основные методики функционального и логического проектирования электронных устройств основаны на использовании языка VHDL (Very high-speed integrated circuits Hardware Design Language), получившего статус международного стандарта IEEE 1076 в 1987 г. При конструкторском проектировании для описания топологии СБИС и печатных плат широко применяются форматы EDIF (Electronic Design Interchange Format) и CIF (Caltech Intermediate Format).

    Развитие методологии моделирования на базе языка VHDL привело в 1999 г. к принятию стандарта IEEE 1076.1, посвященного смешанному (mixed mode) моделированию. Отметим, что смешанным принято называть аналого-цифровое моделирование, т.е. исследование моделей, в которых используются как непрерывные, так и дискретные величины. Объединение стандартов IEEE 1076 и 1076.1 в одном документе VHDL-AMS (VHDL Analog and Mixed Signal) позволило унифицировать описание моделей не только систем электрической природы, но также систем механических, гидравлических, тепловых, а также систем с физически разнородными компонентами.

    В CALS-технологиях представлены не только вопросы описания данных и организации информационных обменов, но и вопросы моделирования приложений. Для выполнения начальных шагов моделирования сложных слабоструктурированных приложений рекомендуется использовать методики объектного моделирования на базе языка UML (Unified Modeling Language), функционального моделирования систем IDEF0, информационного моделированиястандарты и спецификации для электронного обмена информацией между организациями или системами.       

        

К CALS-стандартам относят также стандарты интегрированной логистической поддержки изделий и группу стандартов, посвященных созданию интерактивных электронных технических руководств

    В эту группу входит спецификация MIL-D-87269 - Interactive Electronic Technical Manual (IETM) Database - описывает требования к создаваемым подрядчиками-поставщиками систем вооружений базам данных для интерактивных электронных технических руководств и справочников. В спецификации содержатся требования к построению баз данных, обеспечению обмена данными, наименованию элементов данных, сопровождению и обслуживанию данных. В приложениях к документу перечислены обязательные и необязательные элементы любой документации, а также их взаимосвязь. Подробно описана схема внутреннего построения баз данных на основе конструкций и элементов языка SGML. Описаны методы представления структуры и состава промышленного изделия и его компонент в языке SGML, а также даны шаблоны документов на обязательные составные части технической документации(такие как информация о неисправностях, техническое описание и т. п.). [22]



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 425; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.14.63 (0.023 с.)