Григорий Немецкий, журналист 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Григорий Немецкий, журналист



Стихии шестого океана

 

Космическая среда в корне отличается от земной. В космосе нет воздуха и нет атмосферного давления – там вакуум. В космосе человека подстерегают излучения. В космосе – невесомость.

Сегодня уже созданы герметичные корабли и станции. В них поддерживается нормальное барометрическое давление, нормальный состав, чистота и температура окружающего воздуха, предусмотрены меры, позволяющие избежать лучевого поражения, есть все необходимое для соблюдения личной гигиены. Для выхода в открытый космос и для особо опасных случаев внутри космического аппарата космонавты берут с собой индивидуальные скафандры. Для успешной адаптации в невесомости и последующей реадаптации на Земле разработан комплекс предполетного и полетного тренажа.

Таким образом, наряду с созданием определенных комфортных условий космических "врагов" частично удалось нейтрализовать.

Что же дальше?

Предположим, все вопросы, связанные с защитой человека от космической "агрессии", успешно решены. Можно оставить "агрессоров" в покое?

Конечно же, нет! Полеты в космос не самоцель…

На заре космонавтики во всем мире, да и у нас, раздавались критические голоса:

– А нужен ли нам космос? Может быть, вместо того, чтобы выпускать в небо такие средства, употребить их на сегодняшние насущные нужды?

Так говорили люди некомпетентные. Те, кто подсчитывал будущую отдачу космоса, были уверены: он с лихвой окупит все вложенные в него усилия и средства. Но даже специалисты не предполагали, что случится это так скоро.

Трудно сейчас представить нашу жизнь без связных и метеорологических спутников. Долговременные космические станции не только окупают все расходы по их созданию, запуску и эксплуатации – они приносят реальный доход. Космонавтам на орбите уже трудно выполнить все заказы, поступающие от науки и народного хозяйства.

И тут мы снова возвращаемся к нашим знакомым – к невесомости, вакууму и космическим излучениям. Даже защитив от них полностью человека, мы не перестанем ими интересоваться. Уже сейчас известно, что в невесомости можно получить однородные сплавы и сплавы с пористой структурой, выращивать особой формы кристаллы. Вакуум в принципе может быть получен и на земле в специальных вакуум‑камерах, но получить такой "чистоты" вакуум, как в космосе, на Земле не удается. Естественная вакуум‑камера может оказать неоценимую услугу при получении полупроводниковых материалов с минимальным количеством посторонних примесей. Даже космические излучения оказываются полезными. Космические лучи – это визитные карточки вселенной. Изучая качественную и количественную картину космических излучений, ученые строят модели процессов, происходящих в глубинах вселенной.

 

Мысленный эксперимент

 

Внимание, читатель! Мы с Вами на орбите, в космическом корабле. В руках у меня спичка, и я чиркаю ее о коробок. Раздается характерное шипение, вспыхивает пламя, но спичка горит только до тех пор, пока выгорает сера. Да и форма пламени необычна – пламя не вытягивается, как мы к тому привыкли – язычком, а концентрируется в виде огненного шарика около спичечной головки. Огненный шарик быстро уменьшается в размерах, и спичка гаснет.

В чем дело? Давление в кабине нормальное, воздух такой же, как на Земле… Может, невесомость? А при чем тут невесомость, разве может влиять она на пламя, которое и на Земле почти ничего не весит?

На Земле, как только мы зажигаем спичку, немедленно начинается конвекция воздуха. Близлежащие к спичке слои воздуха, нагревшись возле вспыхнувшего пламени, устремляются вверх, а на смену им приходят новые, холодные. Поэтому к пламени все время подводится кислород, поддерживающий процесс горения, и оно вытягивается в виде язычка вверх.

В невесомости этот процесс s корне видоизменяется: как теплый, так и холодный воздух ничего не весит, поэтому конвекция отсутствует. А раз нет конвекции, то спичка горит до тех пор, пока вокруг ее головки не сгорает весь кислород.

То, что мы проделали со спичкой, называется мысленным экспериментом. Мысленный эксперимент проводится тогда, когда невозможно проникнуть в среду, где надо ставить опыт, или когда этот опыт по той или иной причине ставить нельзя. В частности, ни одному космонавту не придет в голову ставить опыт со спичкой – это небезопасно.

Мысленный эксперимент – несмотря на свою простоту и доступность, инструмент очень мощный, но пользоваться им надо осторожно. Только тогда, когда учтены все условия, в которых проводится опыт, можно получить правильный результат. Поэтому прежде чем сделать окончательное заключение о том, будет ли гореть спичка в орбитальном космическом корабле, приглядимся повнимательнее к условиям внутри кабины.

Ставя свой мысленный эксперимент, мы учитывали только влияние невесомости и получающееся вследствие нее отсутствие естественной конвекции воздуха. Естественной… Вот здесь‑то и кроется наша ошибка, потому что из‑за отсутствия естественной конвекции в космических кораблях и станциях конструкторам пришлось прибегнуть к искусственной. Ведь даже на Земле, несмотря на существование естественной конвекции, нам часто приходится прибегать к вентиляции помещений. В космических же аппаратах вентиляция оказывается абсолютно необходимой, в противном случае космонавтам трудно будет дышать. Если, скажем, космонавт неподвижно будет сидеть в кресле, то вокруг него будет образовываться воздушная область, перенасыщенная углекислым газом. Для того чтобы этого не случилось, используются специальные вентиляторы, которые круглыми сутками перемешивают "дыхательную среду".

Вентиляторы, кстати, выполняют не только эту задачу. Они еще и очищают воздух от пыли. В наземных условиях пыль, даже самая мелкая, все же что‑то весит, поэтому со временем она опускается на пол и на различные предметы, и ее можно вытереть тряпкой или уловить пылесосом. В кабине орбитального аппарата пыль ничего не весит и никуда не опускается, и если ее беспрерывно не убирать, она будет попадать в легкие космонавтов. Правда, в существование пыли в космическом корабле или станции трудно верится: откуда, дескать, она может взяться, ведь мы привыкли, что пыль заносится в помещение с улицы. Конечно, ни пыль, ни грязь в космический корабль с улицы не заносятся.

И все же пыль есть. Истираются любые предметы. Шерстяная и хлопковая одежда, например, исторгает в атмосферу кабины частички волокон. В обитаемых космических аппаратах вентиляторы обычно затягиваются марлей, и эта марля через некоторое время оказывается полностью забитой пылью.

Кстати, одна интересная деталь: если космонавт потерял какую‑нибудь мелкую вещь, он идет ее искать у вентилятора, так как рано или поздно она туда "приплывет".

Для одного из мысленных опытов возьмем круглую колбу с длинным вытянутым горлом. Заполним эту колбу наполовину водой. (Откуда и как вода попадает в колбу – вопрос тоже непростой, но до поры мы оставим его в стороне.)

Как только жидкость попадает внутрь колбы, она начинает принимать необычную форму. Вначале вода распределяется так, что со стороны горловины образуется лунка полусферической формы, будто кто‑то надавил на воду невидимым шаром. Затем лунка углубляется, из полусферы она превращается в три четверти, и наконец полная воздушная сфера погружается внутрь жидкости. Хорошо видно, как сферический воздушный пузырь медленно перемещается внутри жидкости. Стенки пузыря блестящи, и он не воспринимается как воздушный, а скорее похож на твердый посеребренный шар. Со стороны горловины поверхность воды тоже не остается ровной, как это было бы в условиях Земли, а имеет сферическую кривизну, направленную внутрь жидкости.

Глядя на эту картину, нетрудно дать объяснения всем предшествующим процессам. Вода по отношению к стеклу является смачивающей жидкостью. Благодаря смачиваемости образовался вогнутый мениск. На Земле этот мениск был бы едва виден, да и то только у стенок колбы, так как возникающие силы уравновешиваются гидростатическим давлением. В невесомости гидростатическое давление отсутствует и возникающие силы перемещают жидкость по стенкам колбы, а затем замыкают ее вокруг сферического пузыря. Причем пузырь благодаря поверхностному натяжению принимает сферическую форму. На границе двух сред – воды и воздуха – свет отражается, по этой причине воздушный пузырь кажется блестящим.

Если бы мы налили в колбу не воду, а, скажем, ртуть, картинка оказалась бы иной. Ртуть по отношению к стеклу – жидкость несмачивающая, поэтому внутри колбы образовался бы ртутный шар, а вокруг него – свободное воздушное пространство.

Возвратимся, однако, к нашему опыту. Прежде чем его начать, надо было заполнить колбу водой. Предположим, вода хранится в резервуаре, от которого отходит шланг с вентилем на конце. Но ведь в самом резервуаре вода тоже занимает необычное положение, и прежде всего около шланга, где образуется, как и около горловины колбы, вогнутый внутрь резервуара мениск. Это значит, что сколько бы мы ни открывали вентиль, вода с места не сдвинется и никуда не потечет.

Надо сказать, что это одна из трудностей, с которыми столкнулись конструкторы космических аппаратов. И дело оказалось не только в воде. Кроме резервуаров с водой, на борту имеются еще и резервуары с жидким топливом. Если говорить о воде, то ее из бачка можно вытрясти. Топливо же должно подаваться к двигателям равномерно. Так что конструкторам с жидкостью, оказавшейся в невесомости, также пришлось ставить мысленные эксперименты. И только на первый взгляд кажется, что эксперименты эти очень просты.

Итак, жидкость в невесомости сама по себе переливаться никуда не хочет. Как же можно выйти из этого положения?

Предположим, мы ничего не знаем о том, как в действительности устроены жидкостные резервуары на космических аппаратах, поэтому займем место конструкторов и, опираясь на законы физики, решим эту задачу самостоятельно.

Первое, что приходит в голову, скажем, для бачка с питьевой водой – это механический поршень, приводимый в движение обыкновенной рукояткой. Примером может служить обыкновенный медицинский шприц. Кстати, тот же поршень может приводиться в движение сжатым воздухом.

А вот конструкторы космических кораблей придумали устройство проще. Поршень заменили тонкой гибкой диафрагмой, которая перегораживает резервуар на две части. В одной части находится вода или жидкое топливо, в другой – полость, в которую можно вводить воздух под давлением. Как только давление в полости поднимается, диафрагма давит на жидкость и вытесняет ее в трубопровод: воду для питья, или гигиенических нужд, или для полива растений, или топливо для подачи его к двигателям.

Заметим, что хранить жидкость в невесомости можно только в закрытых резервуарах или в сосудах, откуда она не может "сбежать". При устройстве бортового душа, например, конструкторам пришлось позаботиться о герметичности душевой кабины, а для моющегося космонавта сконструировать специальный загубник, через который он мог бы дышать, не рискуя, что капельки воды могут попасть ему в легкие. Вода в душевую колонку подается под давлением, "протаскивается" струей воздуха через душевую кабину и в противоположной стороне отсасывается в специальный резервуар.

 

Прав ли Архимед?

 

…Вы на орбите, и у вас в руках автоматическая чернильная ручка. Вы пытаетесь писать, но ручка не пишет. Почему? Да все очень просто – нет гидростатического давления. Попробуйте на Земле написать этой ручкой что‑нибудь, положив лист бумаги на стену. И трех слов не напишете!

Давайте теперь превратимся в орбитальных металлургов. В нашем распоряжении электрическая плавильная печь, в которой температура поднимается до 1600 градусов – это температура плавления стали. Включим печь и поместим в ее камеру кубик стали.

Проходит некоторое время, и наша бесформенная заготовка начинает оплывать по краям. Сначала оплывают углы, потом грани, затем заготовка принимает все более и более округлые формы. Она становится ослепительно белой. Такое впечатление, что в камере плавает маленькое солнце.

И вот вы уже держите на ладони еще теплый металлический шарик идеальнейшей сферической формы. Таким сделали его невесомость и поверхностное натяжение.

Пожалуй, интереснее всего эксперимент, который можно поставить для проверки закона Архимеда.

Мы берем нашу колбу с водой, колбу, с которой уже имели дело, отщипываем маленький кусочек пробки и вводим ее пинцетом в воду.

Но что это? Архимед утверждал, что на погруженное в жидкость тело действует выталкивающая сила, то есть пробка должна вынырнуть из воды. Но она вовсе не собирается это делать. Правда, она медленно передвигается в жидкости то в одну, то в другую сторону, но это всего лишь за счет инерционных сил, связанных с вращением космического аппарата.

Выходит, Архимед не прав?

Нет, конечно! На погруженное в жидкость тело действует выталкивающая сила, равная весу вытесненной им жидкости. Весу! А веса нет, значит, нет и выталкивающей силы. Закон Архимеда верен везде. На больших планетах – на Юпитере, на Сатурне – вес будет гораздо больше, чем на Земле, и выталкивающая сила будет больше. В невесомости эта сила равна нулю.

 

В невесомость по лестнице

 

В свое время немало было споров по поводу инертной и тяготеющей масс. Обе массы, как близнецы, были похожи друг на друга, и отличить их не было никакой возможности. Очень просто этот вопрос решил Альберт Эйнштейн: "Если их нельзя отличить, – сказал он, – значит, существует только одна масса. В одних случаях она проявляет себя как инертная, а в других – как тяготеющая".

Вспомнить об этом пришлось по той причине, что речь сейчас пойдет о создании в космосе искусственной тяжести. Существует немало проектов создания искусственной тяжести, но все они сводятся к использованию равенства инертной и тяготеющей масс.

Действительно, если ракета, летящая к планетам или к звездам, первую половину пути будет лететь с положительным, а вторую – с отрицательным ускорением, равным по абсолютной величине 9,8 метра в секунду за секунду, то внутри ракеты будет создана искусственная тяжесть, ничем не отличающаяся от земной. Люди, находящиеся внутри такой ракеты, подмены даже не заметят. Они будут четко различать "верх" и "низ", причем предметы будут падать на пол, а дым подниматься к потолку, а шарик катиться по наклонной плоскости в точном соответствии с законами движения, которые мы изучали в школе.

Несколько иначе решается вопрос создания искусственной тяжести на околоземных орбитах. Проектов такого рода много, но все они, в общем‑то, сводятся к использованию вращательного движения.

Если говорить о полетах к звездам – тут все ясно: ведь человеческий организм должен выдержать сверхдлительную невесомость. А нужна ли искусственная тяжесть на околоземных орбитах?

Сейчас ученым многих специальностей хотелось бы забраться в космос, вспомним об астрономах, которые буквально спят и видят, чтобы посмотреть вселенную через не замутненный земной атмосферой объектив. Но ведь в силу возраста и здоровья это может оказаться не для всех возможным. Если бы удалось сделать подъем на орбиту более или менее плавным, то искусственная тяжесть оказалась бы в этом случае весьма полезной.

Но есть и другая сторона дела: как быть тогда с изучением и использованием всего, что связано с невесомостью, ведь невесомость наряду с некоторыми отрицательными качествами обладает и целым рядом положительных. Например, космонавты, которые проходят специальный предполетный тренаж, утверждают, что после адаптации в невесомости легко, хорошо работается. Она дает возможность рационально располагать приборы и оборудование, используя отсутствие верха и низа. В невесомости легко перемещать грузы…

Представим себе большой космический "бублик". Этот "бублик" вращается с такой скоростью, чтобы внутри его была создана земная тяжесть. В нем размещены лаборатории и жилые отсеки. В центре "бублика" – достаточно просторная капсула, которая соединяется с "бубликом" спицами. Спицы, конечно, не от велосипедного колеса – их диаметр достигает нескольких метров. А внутри спиц – лестницы.

И тогда, отправившись по такой лестнице от "бублика" к центральной капсуле, вы вдруг почувствуете, как на глазах теряете в весе! А добравшись до капсулы, окажетесь в невесомости. Тут‑то и расположена лаборатория для всех исследований, связанных с невесомостью…

 

* * *

 

История развития человеческой мысли отмечена вехами: первый обработанный камень, первое зерно, брошенное во вспаханную землю, первое колесо… К этому ряду причислены и полет первого спутника, и первое проникновение человека в космос. Так же, как и предшествующие, эти два этапа войдут в историю планеты Земля на все тысячелетия ее существования!

Исследования в космосе продолжаются. И конечно же, наши ученые и космонавты поставят в космосе еще множество опытов – и по прикладным и по фундаментальным наукам.

Есть на нашей Земле гора с прекрасным названием – Лебедь. У подножия этой горы – камень, на котором высечены слова великого Леонардо:

 

Большая птица начнет первый полет

со спины исполинского лебедя,

наполняя вселенную изумлением,

наполняя молвой о себе все писания, –

вечной славой гнезду, где она родилась!

 

 

Космическая смесь

 

 

Алмазные планеты

 

Не исключено, что выражение "небо в алмазах" имеет не только переносный, но и буквальный смысл. По мнению американского астрофизика Марвина Росса, две периферийные планеты солнечной системы Уран и Нептун заключены в алмазную оболочку.

Версия ученого отличается от общепринятой. Согласно современным представлениям обе планеты имеют каменные ядра, покрытые слоем льда из аммиака и метана, и атмосферу из водорода и гелия. Росс предполагает, что метан распался на углерод и водород. Водород стал частью атмосферы, а углерод под действием огромного давления на этих планетах превратился в алмазы, которые или летают в виде снежных кристаллических хлопьев в нижних слоях атмосферы, или же выпали толстым слоем на поверхности планет. По новым данным о Нептуне и Уране, полученным автоматическими станциями, физические условия на этих планетах таковы, что углерод легко мог преобразоваться в кристаллическую форму. "Довольно трудно, – пишет по этому поводу английский журнал "Нейчер", – как признать, так и опровергнуть гипотезу Росса, остается только дождаться данных на этот счет с американского зонда "Вояджер‑2", который достигнет района Урана в 1986 году, а Нептуна – в 1989‑м".

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 51; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.47.221 (0.032 с.)