Тема 3. 7. Сушка    12ч. , в Т. Ч. Лаб. Раб. И практ. Занят 4ч. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 3. 7. Сушка    12ч. , в Т. Ч. Лаб. Раб. И практ. Занят 4ч.



Студент должен:

знать:

- теоретические основы процесса сушки, условия проведения;

- принцип действия и устройства аппаратов процесса сушки;

- принципы составления материального и теплового балансов;

- принципы выбора сушилок;

уметь:

- рассчитывать материальный и тепловой балансы процесса сушки;

- выполнять построение процесса сушки на диаграмме y-x, определять параметры воздуха;

- выбирать конструкцию сушилки с помощью каталогов.

Назначение сушки. Классификация способов сушки. Равновесие между фазами в процессе сушки. Направление и движущая сила сушки. Кинетика сушки. Определение скорости и времени сушки.

Интенсификация массопередачи при сушке. Конвективная сушка.

Свойства влажного газа (воздуха). Y - x диаграмма влажного воздуха. Материальный и тепловой баланс сушки. Процессы конвективной сушки. Контактная сушка. Сушка инфракрасными лучами, токами высокой частоты, сублимацией. Конструкции сушилок.

СУШКА

Сушка – процесс удаления влаги из твердого материала путем ее испарения и отвода образовавшихся паров.

Обезвоживание материалов осуществляется обычно с целью повышения качества целевого продукта, предупреждения слеживаемости, удешевления транспортировки, уменьшения коррозии аппаратуры и трубопроводов, повышения теплотворной способности (для топлив).

Вследствие больших величин теплом парообразования жидкостей сушка, как и выпаривание, является сравнительно дорогим технологическим процессом. С этой целью перед сушкой часть влаги удаляется более дешевым механическим путем – фильтрованием, прессованием, центрифугированием.

Высушиваемые материалы в зависимости от способа сушки условно можно разделить на следующие группы:

· жидкотекучие материалы – истинные и коллоидные растворы, эмульсии и суспензии;

· пастообразные материалы;

· твердые дисперсные материалы, обладающие сыпучестью во влажном состоянии (пылевидные, зернистые и кусковые);

· тонкие гибкие материалы (ткани, пленки, бумага, картон);

· штучные, массивные, крупногабаритные материалы и изделия: керамика, элементы строительных конструкций, изделия из древесины;

· изделия, подвергающиеся сушке после грунтования, окраски, склеивания и других работ на поверхности.

По способу подвода теплоты к высушиваемому материалу различают:

· конвективную сушку (теплота для осуществления процесса передается материалу при его непосредственном контакте с сушильным агентом, например нагретым воздухом, топочными и другими газами);

· контактную (кондуктивную) сушку (теплота передается материалу через разделяющую их стенку);

· радиационную сушку (теплота передается инфракрасными лучами);

· диэлектрическую сушку (теплота выделяется в материале в результате воздействия на него токов высокой частоты);

· сублимационную сушку (высушивание материала осуществляется в замороженном состоянии при глубоком вакууме).

В технике наиболее часто применяют конвективную и кондуктивную сушки. Последние три способа относятся к специальным видам, их применяют несколько реже.

Равновесие в процессе сушки

Процессу сушки, как любому массообменному процессу, соответствует обратный процесс – поглощение твердым материалом влаги из окружающей среды, содержащей либо пары влаги, либо смесь паров влаги с другими газами. Обозначим давление паров влаги, когда только она является окружающей средой, через рпар, а ее парциальное давление в смеси с газами окружающей) среды – через р D.

В то же время, влаге, содержащейся в материале, соответствует определенное равновесное давление водяного пара над влажным высушиваемым материалом рмат.

Условием сушки в этом случае являются неравенства

Влажность материала, отвечающая условию рматпар*(рматD), соответствует условию равновесия.

Обратному процессу (сорбции паров влаги из окружающей среды твердым материалом) соответствуют неравенства рпар > рмат и p D > рмат.

Давление пара над высушиваемым материалом рмат зависит от влажности материала, температуры и характера связи влаги с материалом. С ростом температуры и влажности материала значение рмат возрастает (рис. 14.1). Кроме того, чем сильнее связь влаги с материалом, тем меньше при прочих равных условиях давление паров влаги над этим материалом.

Различают несколько форм связи влаги с материалом (если под влагой понимать воду, то в порядке убывания энергии связи).

Химически связанная влага – гидратная или кристаллизационная, входящая в состав самого химического соединения, в процессе сушки не удаляется. Для ее удаления необходимо либо высокотемпературное воздействие (прокалка), либо химическая обработка.

Физико-химически связанная влага (адсорбционная и осмотическая) – влага, находящаяся в микропорах и связанная с материалом на молекулярном уровне адсорбционными и осмотическими силами.

Механически (капиллярно) связанная влага, заполняющая макро- и микрокапилляры, может быть удалена не только при сушке, но и при механических воздействиях.

Значения концентраций влаги в материале используются для описания кинетики процесса сушки, а также расчета аппаратов, в которых он осуществляется.

Значения концентраций влаги определяются:

· влажностью с – отношением массы влаги, содержащейся в материале, к массе влажного материала, кг/кг;

· влагосодержанием х – отношёнием массы влаги, содержащейся в материале, к массе сухого материала, кг/кг;

· относительной влажностью φ – отношением количества паров в газе к максимально возможному, отвечающему насыщенному состоянию при тех же температуре и давлении, %.

Кинетика сушки

Кинетика сушки определяется изменением во времени средней влажности материала, которую строят обычно по опытным данным для каждого конкретного материала (рис. 14.2).

Как следует из рис. 14.2, кривая сушки состоит из двух участков, соответствующих различным ее периодам, которые хорошо видны на графической зависимости скорости сушки от влажности материала (рис. 14.3).

Первый период (линия АВ) - период постоянной скорости сушки или внешней диффузии (поверхностного испарения).

В этот период поверхность материала покрыта влагой, что обеспечивается высокой влажностью материала в начале сушки и возмещением испаряющейся влаги вследствие диффузии ее из внутренних слоев. Скорость диффузии влаги равна скорости испарения воды с поверхности высушиваемого материала. Это означает, что подвод воды к поверхности твердого тела полностью компенсирует ее удаление с этой поверхности. Скорость суммарного процесса в этот период ограничивается скоростью поверхностного испарения, т. е. скоростью отвода молекул пара от поверхности.

Кинетические уравнения для первого периода сушки могут быть записаны в виде

где W – количество испаренной жидкости; F – поверхность фазового контакта; хнас – влагосодержание насыщенного воздуха в условиях сушки; х – действительное (рабочее) влагосодержание воздуха; рнас – парциальное давление влаги в условиях насыщения; р – действительное парциальное давление паров влаги в воздухе; βх, β р – коэффициенты массоотдачи; τ1 — продолжительность первого периода сушки.

Факторами, определяющими скорость сушки в первый период, являются:

· влажность газа (чем суше газ, тем больше движущая сила процесса, а значит, больше скорость сушки);

· температура газа (чем выше температура газа, тем выше температура поверхности материала, а следовательно, больше упругость насыщенного пара и выше скорость сушки);

· скорость газа (величина коэффициента массоотдачи зависит от скорости газового потока, а увеличение скорости влечет за собой рост турбулентности потока, сдувание, т. е. уменьшение толщины пограничного ламинарного слоя газа и, следовательно, ускорение переноса в нем вещества – диффузии пара);

· поверхность испарения (скорость испарения увеличивается прямопропорционально поверхности испарения, т. е. скорость сушки, растет при измельчении материала, так как при этом увеличивается удельная поверхность).

Первый период сушки соответствует изменению влажности, материала в пределах сн – скр (начальная влажность – критическая влажность).

Второй период (линия ВЕ) – период падающей скорости сушки или внутренней диффузии.

В этот период подвод влаги к внешней поверхности высушиваемого материала оказывается недостаточно быстрым для компенсации испаряющейся с нее влаги из-за увеличения глубины её извлечения.

Изменение скорости сушки в этот период зависит от того, насколько быстро по сравнению со скоростью испарения будет подходить влага из внутренних слоев к наружным. Это изменение зависит от формы связи влаги с материалом, структуры твердого вещества, толщины куска и т. д. Экспериментально установлено, что чаще всего на участке ВЕ скорость сушки изменяется по ли­нейному закону (см. рис. 14.3).

Кинетическое уравнение для второго периода сушки может быть записано в виде

где К – коэффициент скорости сушки; с – влажность материала в данный момент; сравн - равновесная влажность материала; τ2 – продолжительность второго периода сушки.

Следует отметить, что этот кинетический закон описывает явление лишь приближенно. Действительное изменение скорости сушки в пределах изменения влажности скр – ск (критическая влажность – конечная влажность) может и не следовать линейному закону (пунктирные линии на рис. 14.3).

Когда в ходе сушки поверхность высушиваемого материала покрывается коркой, скорость процесса уменьшается и выражается на графике кривой, расположенной ниже прямой линии. В других случаях, когда в результате сушки происходит растрескивание высушиваемого материала, а в результате этого – увеличение поверхности контакта фаз, скорость сушки увеличивается и выражается на графике кривой, расположенной выше прямой скр – ск.

Интенсификация второго периода процесса сушки может быть достигнута путем перемешивания высушиваемого материала, способствующего механическому переносу влаги из внутренних слоев к поверхности контакта с сушильным агентом.

Таким образом, для периодических процессов общая продолжительность сушки складывается из продолжительности сушки в первом τ1 и во втором τ2 периодах:

τ = τ1 + τ2.

Значение τ1 определяют при этом из уравнений (14.2) и (14.3)

В этих уравнениях Δрср и Δхср – средняя движущая сила процесса, которая определяется по формулам

где Δрн = (рнас - р)н – начальная разность между парциальным давлением насыщенного водяного пара в условиях сушки и рабочим парциальным давлением; Δрк = (рнас - р)к – конечная разность между парциальным давлением насыщенного водяного пара в условиях сушки и рабочим парциальным давлением; Δхн = (хнас - х)н – начальная разность между влагосодержанием насыщенного воздуха в условиях сушки и рабочим влагосодержанием; Δхк = (хнас - х)к – конечная разность между влагосодержанием насыщенного воздуха в условиях сушки и рабочим влагосодержанием.

Для определения продолжительности второго периода сушки пользуются уравнением (14.4):

где G – количество высушиваемого материала, кг сухого вещества. Из уравнения (14.6) следует:

Интегрируя уравнение (14.7) в пределах ск – скр и 0 – τ, получим

Значения скр и ск определяются экспериментально.

Конвективная сушка

Конвективная сушка – сушка влажного материала в потоке горячего воздуха или топочных газов, которые при этом являются тепло- и влагоносителями. Так как в качестве сушильного агента при конвективной сушке наиболее часто используют воздух, ее называют воздушной сушкой.

Материальный баланс конвективной сушки составим при условии, что масса влажного материала, поступающего на конвективную сушку, Gн с влажностью сн, выраженной в процентах (массовых долях), а после сушки получим массу высушенного материала Gк с влажностью ск и количеством испаренной влаги W. В этом случае материальный баланс для этих потоков может быть записан

а для сухого твердого вещества представлен в виде

где сн и ск – влажности, %.

Из уравнений (14.8) и (14.9) может быть получено либо количество высушенного материала , либо количество испаренной влаги

В процессе конвективной сушки участвует также воздух, абсолютно сухое количество которого обозначим L. При подаче на сушку его влагосодержание составляет х1, а после сушки и поглощения испаренной влаги в количестве W оно становится равным х2.

Баланс конвективной сушки по влаге в сушильном агенте может быть в этом случае записан

откуда расход воздуха

Важной характеристикой процесса конвективной сушки является удельный расход воздуха (на 1 кг испаренной влаги)

зависящий от разности влагосодержания отработавшего и свежего воздуха.

Тепловой баланс конвективной сушки составим для конвективной сушилки, схема которой представлена на рис. 14.4. Допустим, что на высушивание поступает влажный материал в количестве G н = G с.в + W, где G с.в и W – количество в нем абсолютно сухого вещества и влаги соответственно. Подача и перемещение влажного материала в сушильную камеру может осуществляться транспортными средствами (ленточным транспортером, вагонетками и вес которых составляет G тв. Кроме того, в сушилку вводится L абсолютно сухого воздуха. Для подогрева воздуха к калориферу

подводится теплота Q к.

Обозначим: сс. в, стр – теплоемкости сухого вещества и транспортных средств; θ, θк – температуры материала, поступающего на сушку и после сушки; tтр. н, tтр.к – температуры транспортных средств на входе в сушильную камеру и на выходе из нее; i0, i1, i2 – удельные энтальпии воздуха на входе в сушильную камеру, после нагревания в калорифере, на выходе из сушильной камеры; Q п – потери теплоты в окружающую среду.

Баланс теплоты может быть выражен следующим образом:

Таким образом, тепловой баланс процесса конвективной сушки можно представить равенством

Удельный расход теплоты, приходящийся на 1 кг испаряемой при сушке влаги, можно получить, разделив каждый член выражения (14.11) на W. Обозначив удельные расходы теплоты как

перепишем уравнение (14.11) в виде

При принятых обозначениях удельный расход теплоты в калорифере можно также представить в виде

Подставив это выражение в уравнение (14.12), получим

где Δ – изменение энтальпии сушильного агента.

Уравнение (14.13) является основной формой теплового баланса конвективных сушилок. При Δ > 0 энтальпия сушильного агента увеличивается, при Δ < 0 – уменьшается, при Δ = 0 величины i1 = i2 = const, что соответствует теоретической сушилке.

Подставив в уравнение (14.13) удельный расход воздуха из (14.10) и заменив i2 и х2 на их промежуточные значения i и х, получим выражение

являющееся уравнением рабочей линии процесса сушки, представляющей прямую линию в координатах i – х диаграммы состояния влажного воздуха.

Диаграмма состояния влажного атмосферного воздуха (i – х) впервые была построена в 1918 г. Л. К. Рамзиным и выражает зависимость между его энтальпией и влагосодержанием (рис. 14.5). Диаграмма построена для 1 кг сухой массы воздуха и давления, равного 745 мм рт. ст., которое можно считать среднегодовым для центральных районов России. И хотя угол между координатными осями составляет 135°, для удобства расчетов на диаграмме нане­сена вспомогательная ось х, проведенная под углом 90°.

На диаграмме (см. рис. 14.5) построены:

· линии постоянного влагосодержания (х = const), представляющие собой вертикальные прямые, параллельные оси ординат;

· линии постоянной энтальпии (i = const) – прямые, параллельные оси абсцисс, идущие под углом 135°;

· линии постоянных температур, или изотермы (t = const);

линия парциальных давлений водяного пара р пар во влажном воздухе;

· линии постоянной относительной влажности (= const), представляющие расходящийся пучок кривых. При t = 99,4°С – температуре кипения воды при давлении 745 мм рт. ст. – кривые φ имеют перелом и идут вертикально вверх. Это объясняется тем, что при t ≥ 99,4°С парциальное давление насыщенных паров водяного пара, находящегося в воздухе, будет равно общему давлению, а влагосодержание воздуха при данной относительной влажности остается постоянным.

Кривая φ = 100%, соответствующая насыщенному состоянию воздуха паром при данной температуре, делит диаграмму на две части. Выше линии насыщения находится область ненасыщенного состоянии влажного воздуха. Здесь любое состояние влажного воздуха находится по двум любым параметрам (например, пересечением изотермы и линии влагосодержания). По найденной точке могут быть определены энтальпии и относительная влажность воздуха.

Ниже линии насыщения находится область пересыщенных состояний (в технике сушки это нереально).



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 254; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.134.118.95 (0.062 с.)