Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору



Найдем уравнение плоскости, проходящей через точку перпендикулярно вектору , называемому нормалью к плоскости. Для любой точки плоскости вектор ортогонален (перпендикулярен) вектору , следовательно, их скалярное произведение равно нулю:

 

или .

Общее уравнение плоскости

После преобразования, уравнение

 

можно записать в виде , приняв , получаем общее уравнение плоскости . Уравнение плоскости в отрезках Если же общее уравнение плоскости является полным (т.е. ни один из коэффициентов не равен нулю), то его можно преобразовать к виду, называемому уравнением плоскости в отрезках ,   равны величинам отрез­­ков, отсекаемых плоскостью на координатных осях.

 

Уравнение плоскости, проходящей через три данные точки

Пусть плоскость проходит через точки и , не лежащие на одной прямой и – произвольная точка плоскости. Тогда векторы ,

, компланарны. Следовательно, их смешанное произведение равно нулю. Используя координатную запись смешанного произведения, получаем:

.

 

Это уравнение, которому удовлетворяют координаты любой точки, лежащей на искомой плоскости, является уравнением плоскости, проходящей через три данные точки.

 

Нормальное уравнение плоскости

Положение плоскости вполне определяется заданием единичного вектора , имеющего направление перпендикуляра , опущенного на плоскость из начала координат, и длиной p этого перпендикуляра

Пусть , а – углы, образованные единичным вектором с осями и ; Возьмем на плоскости произвольную точку и соединим ее с началом координат. Образуем вектор . При любом положении точки Μ на плоскости проекция радиус-вектора на направление вектора всегда равно : , т.е. или – нормальное уравнение плоскости в векторной форме. Записав его в координатах получим нормальное уравнение плоскости в координатной форме:

 

.

 

Общее уравнение плоскости можно привести к нормальному уравнению так, как это делалось для уравнения прямой на плоскости. А именно: умножить обе части общего уравнения на нормирующий множитель

 

где знак берется противоположным знаку свободного члена общего уравнения плоскости.

Угол между плоскостями.

Пусть плоскости и заданы соответственно уравнениями и . Требуется найти угол между этими плоскостями.

Плоскости, пересекаясь, образуют четыре двугранных угла (рис. 11.6): два тупых и два острых или четыре прямых, причем оба тупых угла равны между собой, и оба острых тоже равны между собой. Мы всегда будем искать острый угол. Для определения его величины возьмем точку на линии пересечения плоскостей и в этой точке в каждой из плоскостей проведем перпендикуляры и к линии пересечения. Нарисуем также нормальные векторы и плоскостей и с началами в точке (рис. 11.6).

 

Рис.11.6.Угол между плоскостями

 

Если через точку провести плоскость , перпендикулярную линии пересечения плоскостей и , то прямые и и изображения векторов и будут лежать в этой плоскости. Сделаем чертеж в плоскости (возможны два варианта: рис. 11.7 и 11.8).

 

Рис.11.7.Угол между нормальными векторами острый

 

 

Рис.11.8.Угол между нормальными векторами тупой

 

В одном варианте (рис. 11.7) и , следовательно, угол между нормальными векторами равен углу , являющемуся линейным углом острого двугранного угла между плоскостями и .

Во втором варианте (рис. 11.8) , а угол между нормальными векторами равен . Так как

то в обоих случаях .

По определению скалярного произведения . Откуда

и соответственно

(11.4)


Так как координаты нормальных векторов известны, если заданы уравнения плоскостей, то полученная формула (11.4) позволяет найти косинус острого угла между плоскостями.

Если плоскости перпендикулярны, то перпендикулярны и их нормальные векторы. Получаем условие перпендикулярности плоскостей:

(11.5)


Если плоскости параллельны, то коллинеарны их нормальные векторы. Получаем условие параллельности плоскостей



Поделиться:


Последнее изменение этой страницы: 2020-10-24; просмотров: 80; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.193.207 (0.008 с.)