Особенности использования шумоподобных сигналов 
";


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Особенности использования шумоподобных сигналов



 

Cистемы многоканальной передачи с ортогональными и линейно-независимыми сигналами требуют для нормальной работы той или иной синхронизации: точного совпадения спектра сигнала с полосой пропускания при ЧРК; точного совпадения временных интервалов передачи сигналов отдельных каналов при ВРК; точного определения моментов начала и конца тактового интервала в системах с разделением сигналов по форме активными фильтрами; точной установки момента отсчета в системе с согласованными фильтрами.

В ряде случаев осуществить точную синхронизацию затруднительно. С подобными ситуациями приходится сталкиваться, например, при организации оперативной связи между подвижными объектами (автомобилями, самолетами). Такая задача возникает при организации оперативной связи с использованием искусственных спутников Земли в качестве ретрансляторов. Во всех этих случаях могут быть использованы системы асинхронной многоканальной связи, когда сигналы всех абонентов передаются в общей полосе частот, а каналы не синхронизированны между собой во времени. Поскольку в таких системах за каналами не закреплены ни частотные полосы, ни временные интервалы и время работы каждого канала произвольно, то такие системы называют системами со свободным доступом к линии связи или системами с незакрепленными каналами. В системах со свободным доступом каждому каналу (абоненту) присваивается определенная форма сигнала, которая и является признаком, "адресом" данного абонента. В отличие от обычного разделения по форме, где условие ортогональности сигналов выполняется лишь тогда, когда тактовые интервалы всех каналов жестко синхронизированны, для полного линейного разделения сигналов в системах рсо свободным доступом ортогональность или линейная независимость должны сохраняться при любых временных сдвигах сигналов. Это значит, что для любой пары сигналов si(t) и sк(t) должно выполняться условие:

 

 (9.24)

 

при 0 £ t £ T, где T - длительность элементарного сигнала, а интегрирование производится на любом интервале от t до t+T.

Строго говоря, условие (9.24) выполняется только в случае, когда сигналы sк(t) представляют собой белый шум, т.е. имеют неограниченную ширину спектра и бесконечную дисперсию; для реальных сигналов оно невыполнимо. Вместе с тем, можно сформировать такие сигналы, для которых (9.24) выполняется приближенно в том смысле, что

 

 (9.24а)

 

при 0 £ t £ T, т.е. скалярные произведения сигналов при любом сдвиге по времени много меньше энергии элементарного сигнала. Такие сигналы можно назвать почти ортогональными. По своим свойствам почти ортогональные сигналы приближаются к белому шуму, поэтому их часто называют шумоподобными: их корреляционные функции и спектральные плотности мощности близки к аналогичным характеристикам квазибелого шума. Шумоподобные сигналы относятся к классу сложных сигналов, база которых B = 2FT >> 1, и являются дальнейшим развитием сигналов, различающихся по форме. Теории шумоподобных сигналов и вопросам их использования в различных системах связи посвящены работы Л.Е.Варакина [5]. Наиболее распространенным примером технической реализации почти ортогональных шумоподобных сигналов могут служить определенным образом сформированные псевдослучайные последовательности дискретных, в частности, двоичных радиоимпульсов. База сигналов при этом определяется числом импульсов в последовательности. Каждому каналу присваивается одна из множества почти ортогональных двоичных последовательностей, которая служит "адресом" канала. Это приводит к названию "асинхронные адресные системы связи" (ААСС).

Важным достоинством ААСС является то, что нет необходимости в центральной коммутационной станции; все абоненты имеют прямой доступ друг к другу без частотной перестройки приемных и передающих устройств. Здесь достаточно набрать "адрес" вызываемого абонента, т.е. изменить "форму" импульсной адресной последовательности.

В системах с закрепленным каналами ЧРК и ВРК добавление хотя бы одного нового абонента оказывается возможным лишь при исключении одного из имевшихся в системе. Значительно проще эта задача решается в ААСС. Здесь вследствие свободного доступа к линии связи могут вести передачу любые Na активных абонентов из N абонентов системы связи. При определении числа Na нужно учитывать, что вследствие неполной ортогональности каналов в ААСС неизбежны переходные помехи ("шумы неортогональности"), уровень которых растет по мере увеличения Na. Поэтому число одновременно работающих абонентов должно быть ограничено. Допустимое значение Na возрастает по мере увеличения базы сигнала, так как чем больше база сигнала, тем точнее выполняется условие (9.24 а).

В зависимости от времени активности абонентов (т.е. от доли времени, занимаемой k-м каналом для передачи сообщений) можно организовать, например, 1000 - канальную систему связи, в которой одновременно ведут передачу любые 50 абонентов из тысячи. В таких системах легко реализуются резервы пропускной способности, возникающие за счет малоактивных абонентов. Изучив статистику сообщений, передаваемых по каждому каналу, можно установить допустимое число каналов в системе N, при котором обеспечивается нормальная работа Na активных каналов.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-13; просмотров: 184; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.107.149 (0.004 с.)