Группа веществ, изолируемых экстракцией органическими растворителями - пестициды 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Группа веществ, изолируемых экстракцией органическими растворителями - пестициды



Лекция

Группа веществ, изолируемых экстракцией органическими растворителями - пестициды


План

Ядохимикат пестицид фосфорорганический хлорорганический

Общая характеристика группы

Охрана окружающей среды при использовании пестицидов

Классификация, токсичность

Клиническая картина отравлений

Фосфорорганические пестициды

Хлорорганические пестициды

Производные карбаминовой кислоты. Севин

Ртутьорганические соединения

Синтетические пиретроиды


Общая характеристика группы

 

Ядохимикаты - вещества или смесь веществ химического или биологического происхождения, которые предназначены для уничтожения вредных насекомых, грызунов, возбудителей болезней растений и животных.

Ядохимикаты, применяемые в народном хозяйстве, объединяют под общим названием пестициды (от лат. pestis - зараза и cido - убиваю).

Пестициды - собирательный термин.

Пестициды применяют в сельском хозяйстве, санитарии, деревообрабатывающей промышленности, нефтедобычи и других отраслях.

В медицине пестициды используют для борьбы с членистоногими - переносчиками таких заболеваний, как малярия, чума, туляремия, энцефалит, многие кишечные заболевания. В ветеринарии пестициды используют в качестве дезинфицирующих средств; в промышленности - для предохранения неметаллических материалов (полимеров, древесины, текстильных изделий); используют для борьбы с обрастанием морских судов, особенно в южных морях и т.д.

Масштабы применения пестицидов:

США, Япония, Франция, Германия, Великобритания, Россия - список стран с растущим применением пестицидов. Это обосновывается экономической эффективностью применения пестицидов. Например, прополка 1 га сахарной свеклы требует не менее 20 рабочих дней, а использование гербицидов решает эту проблему за 30-40 минут. Наибольшая урожайность зерновых в Японии, США (54,8%; 55,7%), объясняется применением: с одной стороны улучшением семеноводства и обработки почвы; применением инсектицидов, гербицидов и фунгицидов.


Охрана окружающей среды при использовании пестицидов

 

В настоящее время пестициды - основные средства защиты растений, животных и различных материалов от повреждений разнообразными организмами.

Например, в 1972 году в СССР на 2 млн. га вся растительность была уничтожена луговым мотыльком.

В РФ в 1992 году пришлось вести борьбу с саранчой на площади около 2 млн. га, что потребовало большого количества «дециса», а также использования военных самолетов, т. к. саранча за один день съедает растительность на огромных площадях.

В 1995 году в Краснодарском крае сибирским шелкопрядом было повреждено 600 тыс. га леса. Борьба велась с привлечением сил МЧС.

В 1996 году в РФ из-за недостаточной борьбой с клопом-черепашкой 5 млн. т. пшеницы потеряло хлебопекарные качества, использовали на корм скоту. Убыток 2 триллиона рублей.

В настоящее время использования современных пестицидов позволяет избежать массовых поражений.

Охрана окружающей среды направлена на создание новых пестицидов, подбор ассортимента, уменьшающего вредное воздействие, а обладающего избирательным действием.

Серьезный недостаток современных пестицидов - приобретение резистентности (устойчивости) живых организмов к пестицидам, которая преодолевается использованием смесей пестицидов с различными механизмами действия. Например, использование фунгицидов контактного и системного действия.

Приобретение резистентности вызывает необходимости разработки новых пестицидов.


Классификация, токсичность

Классификация пестицидов по химической природе

Органические

1.1.Органические соединения фосфора: хлорофос, карбофос, метафос.

.Галогенпроизводные соединения углеводородов: гептахлор, гексахлорциклогексан.

.Производные карбаминовой кислоты: севин.

. Синтетические пиретроиды: децис, шерпа.

.Металлоорганические соединения: этилмеркурхлорид.

. Триазиновые производные: аметрин, атразин.

.Нитрофенолы и нитрокрезолы.

Неорганические

2.1. Соединения ртути, олова, бария, меди, мышьяка, таллия.

Метафос

Химически чистый препарат - белое кристаллическое вещество, температура плавления 360С, технический метафос - 20% концентрат эмульсии. Представляет собой густую жидкость от желтого до коричневого цвета со специфическим, неприятным запахом. Хорошо растворим в органических растворителях (спиртах, кетонах), плохо в бензине, петролейном эфире. В воде растворим при 250С 60 мг\л.

Разрушается солнечным светом. В щелочной среде легко гидролизуется до п-нитрофенола. При высокой температуре разлагается с образованием более токсичных соединений.

Форма выпуска: 20% концентрат эмульсий, 2,5% дуст, смачивающий порошок.

Летальная доза 0,2-2,0 г.

Хлорофос

Белый кристаллический порошок с приятным запахом, температура плавления 740С. Технический препарат - загустевшее белое вещество со специфическим запахом.

Хлорофос хорошо растворим в спирте, бензоле, воде, хуже в четыреххлористом углероде. Быстро гидролизуется в щелочных растворах, медленнее в кислых.

Форма выпуска: 75% технический препарат, 7% гранулированный порошок (для борьбы с мухами, паразитами человека и животных).50 для хлорофоса 50-100г.

Карбофос

Чистое вещество - слабо окрашенное в желтый цвет масло со слабым неприятным запахом.

Растворимо в воде при комнатной температуре, хорошо растворимо в спиртах, кетонах, эфирах. При продолжительном нагревании изомеризуется. Медленно гидролизуется водой. При контакте с железом теряет инсектецидные свойства.

Форма выпуска: 30% концентрат эмульсии (для борьбы с тлей, клещами на деревьях, полевых культурах).

Летальная доза карбофоса - 5-10г.

Объекты исследования при отравлении ФОС:

желудок, толстый и тонкий кишечник с содержимым, печень, почки, мозг, легкие, сердце, кровь, моча.

Очистка экстракта

Получение сухого остатка

(водяная баня, ротационный испаритель)

Растворение

Исследования на ФОС:

1) предварительные,

2) подтверждающие,

)   количественное определение.


Метафос

Система: хлороформ - н-гексан или бензол

Проявитель: раствор бромтимолового синего, содержащий серебра нитрат, термостатирование при 600С 20 минут. Обработка уксусной кислотой. Пятна лилового цвета.

Хлорофос

Система: ацетон-н-гексан.

Проявитель: раствор резорцина и карбоната натрия - пятна оранжевого цвета, после термостатирования при 1000С 5 минут.

Карбофос

Система: ацетон-н-гексан

Проявитель: раствор бромтимолового синего, содержащий серебра нитрат, термостатирование при 600С 20 минут. Обработка уксусной кислотой. Пятна лилового цвета.

. Подтверждающие исследования:

Метафос

. реакция Шенемана (действие 0-дианизидина и пербората натрия) - желтое или красноватое окрашивание.

. спектры в УФ - области.

Хлорофос

. с резорцином в щелочной среде - розовое окрашивание;

. проба Фудживара (с пиридином в щелочной среде)- розовое или красное окрашивание;

. с 2,4-динитрофенилгидразином - сине-фиолетовое окрашивание.

Карбофос

. с реактивом Марки - оранжевая окраска, переходящая в темно-коричневую.

. МКС реакция с хлоридом ртути. Наблюдают игольчатые кристаллы.

. МКС с реактивом Драгендорфа. Иглы темно-бурого цвета.

. реакция с диазотированной сульфаниловой кислотой в щелочной среде при нагревании, вишнево-красное окрашивание.

Количественное определение:

а) ГЖХ;

б) фотометрия на основе реакции образования молибденовой сини, для хлорофоса на основе реакции с 2,4-динитрофенилгидразином.

Хлорорганические пестициды

1.Общая характеристика группы.

. Представители

. Токсичность.

. Пути метаболизма.

. Химико-токсикологический анализ.

 

Общая характеристика

Токсикологическое значение из хлорорганических пестицидов имеют 4 группы:

) ДДТ и его аналоги

) группа гексахлорциклогексана (ГХЦГ)

) полихлорциклодиены(ГПХ)

) токсафен и его производные

Группа ДДТ:

Название группы соответствует токсичному инсектециду дихлордифенилдихлорметилметану. Эмпирическая формула С14Н9Cl5. С 1939г стали известны его инсектецидные свойства и началась эра синтетических органических пестицидов.

Токсичен и аналог ДДТ - метоксихлор.

Селективные инсектициды. ДДТ обладает нейро-, эмбрио-, иммунотоксичностью, мутагенным действием. Обладают способностью к кумуляции, долго сохраняются в природе. Производство и применение ДДТ в СССР запрещено с 1972 года, но его до сих пор можно найти на всех уровнях биосферы.

Гексахлорциклогексан (ГХЦГ) (гексахлоран, линдан)

 

 

Применяют в сельском хозяйстве как кишечный и контактный инсектецид, фумигант для борьбы с вредителями зерновых культур, садов, виноградников, с паразитами животных. В виде дустов, смачивающихся порошков, концентратов эмульсий, дымовых шашек и др. Применение препарата в РФ строго регламентировано (разрешено использование в смесевых протравителях).

Свойства: ГХЦГ представляет собой смесь изомеров.Технический препарат имеет 4 изомера - альфа и гамма стимулируют ЦНС; бетта и сигма угнетают ЦНС. Изомер линдан (γ-изомер) с запахом плесени наиболее токсичен.

ГХЦГ представляет собой желтовато-серое кристаллическое вещество с характерным запахом плесени, особенно при хранении. Температура плавления равна 128°С. Слабо растворим в воде, растворим в органических растворителях. Устойчив по отношению к окислителям, концентрированным кислотам. При повышенной температуре возгоняется.

Токсичность:

Яд кожно-резорбтивного действия. Обладает куммулятивным и эмбриотоксическим действием.

Гексахлорциклогексан быстро всасывается и адсорбируются всеми органами, особенно костным мозгом, мышцами языка, прямой кишкой, жировой тканью. Вызывает гиперемию кожи, отечность, появление пузырьков. Раздражает конъюктиву глаз. Вызывает головокружение, головную боль, тошноту. Возможно развитие токсического отека легких.

Выделяется через ЖКТ, молочные железы и почками. Выделение из организма медленное (месяцы) через почки и кишечник.

Метаболизм: путем дегидрирования, дегидрохлорирования, дехлорирования, гидроксилирования.

Отравления: острые и хронические.

Пути поступления: ингаляционно и перорально.

Группа полихлорциклодиенов

Гептахлор (гептанал)

 

Применяют как контактный и кишечный инсектецид, стимулятор роста растений.

Свойства: белое кристаллическое вещество, температура плавления равна 95-960 С.

Технический препарат: мягкое воскообразное вещество рыжевато-коричневого цвета. Обладает камфорным запахом. Температура плавления равна 46-740С. Практически не растворим в воде, хорошо растворим в органических растворителях, маслах, ароматических углеводородах. Устойчив к воздействию влаги, света, высокой температуры.

Токсичность:

Яд кожно-резорбтивного действия. Куммулирует в организме. По токсической классификации относится к I классу опасности. Стоек. Не допустимо наличие остаточных количеств в пищевых продуктах.

Симптоматика отравлений зависит от пути поступления и тяжести отравления.

1. Ингаляционно: кашель, покраснение зева, слизистых оболочек глаз.

2. Перорально: рвота, боль в животе, понос, в тяжелых случаях - токсический отек легких, судороги.

Метаболизм: окисление до более токсического эпоксида


Пути поступления в организм:

1. ингаляционно (пыль);

2. перорально.

Типы отравлений:

1. острые

2. хронические

·   случайные

·   криминальные

Схема исследования на ГПХ

25,0 объекта

Экстракция (н-гексан или эфир)

(2раза по 30 минут)

Очистка (б/в Na2SO4)

Упаривание

Сухой остаток

Растворение в С2Н5ОН

Исследование на ГПХ


I. Предварительное исследование:

.Реакция отщепления Cl- и обнаружение его с AgNO3 (предварительное нагревание со спиртовым раствором NaOH, охлаждение, подкисление HNO3 +AgNO3 →белый осадок или муть AgCl).

.ТСХ в частной системе (н-гексан).

Проявление: водно-ацетоновый раствор аммиаката серебра с дальнейшим облучением УФ-светом.

Эффект: пятно серовато-черного цвета.

II. Подтверждающие исследования.

.Специфичная реакция - с диэтаноламином.

Эффект: фиолетовое окрашивание.

.Реакция с анилином и пиридином в щелочной среде при нагревании → темно-зеленое окрашивание.

2.3.ГХ дериватов (летучих производных)

.ГХ\МС

.ВЭЖХ

Количественное определение: фотометрия, ВЭЖХ

Севин (карбарил)

 

 

НО═С═ NH 2

    ║

    O

Карбаминовая кислота - амид угольной кислоты, в свободном состоянии неизвестна. Соли карбаминовой кислоты - карбаматы, устойчивы, но в качестве пестицидов нашли применение сложные эфиры - уретаны. Однако в химико-токсикологическом анализе к пестицидам применяют термин карбаматы.

Севин (карбарил) - производное карбаминовой кислоты.

Относится к группе высокотоксичных инсектецидов контактно-кишечного действия, применяется также как гербецид.

Выпускается в виде порошка, дуста, гранул.

Свойства: белое кристаллическое вещество, температура плавления равна 1420С. Плохо растворим в воде, хорошо в органических растворителях. В щелочной среде гидролизуется с образованием α -нафтола или β -нафтола.

Токсичность: пути поступления: перорально, ингаляционно. Быстро всасывается. Ингибирует ХЭ. Симптомы отравления похожи на симптомы при отравлении ФОС, но менее продолжительны: никотиноподобные, мускариноподобные и центральные. Симптоматика отравления сохраняется не более 8 часов.

В отравлении различают 3 стадии:

) стадия возбуждения (легкая степень отравления).

Идет стимуляция М - холинореактивных систем. Наблюдаются мускариноподобные симптомы: тошнота, рвота, слюно- и слезотечение, брадикардия, бронхоспазм;

) стадия судорог и гиперкинезов (средняя степень отравления).

Наряду с мускариноподобными симптомами наблюдают никотиноподобные: повышение тонуса дыхательной мускулатуры - подергивание мышц языка, лица, всего тела;

) стадия параличей (тяжелая степень отравления).

К вышеперечисленным симптомам добавляются центральные: нарушение психики, изменения речи, тремор, судороги, парезы и параличи. Развивается коматозное состояние, наступает угнетение дыхания и сердечной деятельности.

Севин в организме нарушает функцию печени. Выводится почками и через кишечник.

Врачебная помощь: антидотная терапия - холинолитические препараты (атропина сульфат, амизил), реактиваторы холинэстеразы.

Пути метаболизма:

1. гидролиз до β -нафтола (до 20%)

2. окисление

.   конъюгация

Отравления случайные: бытовые и производственные. Причины отравлений: несоблюдение ТБ, неправильное хранение, транспортировка, небрежное обращение.

Ртутьорганические пестициды

Этилмеркурхлорид - С2Н5Н gCl

РОС (ртутьорганические соединения) применяют для протравы семян. Протрава - предпосевная обработка: убиваются споры болезнетворных грибков, вызывающих заболевания растений: головня, полиспороз, и т.д. РОС в смеси с другими органическими пестицидами применяют как препараты комплексного действия в борьбе с грибковыми заболеваниями и насекомыми вредителями. В качестве пестицидов используют различные соли, например фенил - меркурацетат, этилмеркурхлорид и препараты, созданные на их основе гранозан, меркуран и.т.д. Пары гранозана в 2 раза токсичнее ртути. Остаточные количества гранозана в пищевых продуктах не допускаются.

Основным действующим веществом гранозана является этилмеркурхлорид (C2H5HgCl) - белый порошок, t0 плавления 1920С, со специфическим запахом. Практически нерастворим в H2О, хорошо растворим в горячем спирте, 10% растворе NaOH. Легколетуч, высоко токсичен, гидролизуется с освобождением Hg2+ , способен куммулировать в организме.

Инсектицид и гербицид.

Пути попадания в организм:

· перорально

·   ингаляционно.

Типы отравлений: острые и хронические. Случайные при использовании в пищу «загрязненных» воды или продуктов из зерна, муки, овощей, фруктов, рыбы. Производственные при несоблюдении ТБ при производстве пестицидов, их использовании, хранении и т.д.

РОС, проникая в организм, оказывает сильное токсическое действие, которое зависит от окружения атома ртути. Наиболее опасны алкильные соединения, которые проникают через плацентарный барьер.

РОС гидролизуются в организме с освобождением двухвалентной ртути, которая связывается с меркаптокислотами, серосодержащими пептидами и белками.

При попадании в организм органических соединений Hg не зависимо от пути поступления наблюдается острое поражение ЦНС и сердечно-сосудистой системы со следующими проявлениями:

тремор,

возбуждение,

расстройство речи,

расстройство глотания,

нарушения зрения и слуха,

отек головного мозга.

Позже возникают расстройства функций печени и почек.

Выведение из организма медленное. В организме ртуть из РОС откладывается в тканях мозга.

Чувствительность к ртутным соединениям различна. Смерть может наступать в первые часы после отравления от паралича ЦНС, может через 5-10 дней. Клиническая картина отравления затягивается до 1-1,5 месяца и напоминает пищевые отравления, дизентерию и другие желудочно-кишечные заболевания.

Исследование на общую ртуть

Основано на окислении материала НNO3(к.), восстановлении ртути хлоридами Sn и Cd до элементного состояния и определения ртути.

Для анализа используют 10 г биоматериала, в качестве катализатора используют С2Н5ОН. Проводят на кипящей водяной бане 1 час.

Обнаружение ртути в охлажденном виде производят реакцией с сульфитом меди. Эффект: розовое окрашивание осадка.

Визуальная оценка по стандартной шкале.

Исследование на РОС

Включает:

щелочной гидролиз биоматериала,

экстракцию органическим растворителем (толуолом);

реэкстракцию цистеином с последующей экстракцией в бензол

анализ экстракта:

метод ТСХ в виде дитизонатов на основании Rf

метод ГЖХ с электронозахватным детектором по времени удерживания.

Гидролиз биоматериала проводят в течение 1 часа на водяной бане при температуре 85-900С с 10 г биоматериала в присутствии 10 мл раствора КОН.

После гидролиза и охлаждения гидролизата, добавляют 20 мл. НСl (1:1), вносят 1 г хлорида меди и добавляют 50 мл толуола. Проводят экстракцию толуолом в течение 30 минут, затем к толуольной фракции добавляют 10 мл свежеприготовленного цистеина для реэкстракции (проводят 10 минут). К реэкстракту прибавляют насыщенный раствор хлорида калия, разбавленной соляной кислоты и бензол, вновь энергично встряхивают 10 минут, отделяют бензольный экстракт и исследуют.

Синтетические пиретроиды

Синтетические пиретроиды - соединения являющиеся эфирами хризантемовой, перметриновой и дельтаметриновой кислот, 3-(1,1,2,2,-тетрабромэтил)-2,2,-диметилциклопропанкарбоновой кислоты, 3-(2-хлор-3,3,3-трифторпропенил)-2,2-диметилциклопропанкарбоновой кислоты, 2,2,3,3-тетраметилциклопропанкарбоновой кислоты. Часто к синтетическим пиретроидам относят вещества, не являющиеся производными циклопропанкарбоновой кислоты, но сходные с ними по действию, например, эфиры изовалериановой кислоты.

Классификация

1. Производные замещённых циклопропанкарбоновых кислот:

а) производные хризантемовой кислоты (аллетрин, тетраметрин);

б) производные З-(2,2-дихлорвинил)-2,2-диметилциклопропанкарбоновой перметриновой кислоты (перметрин или ровикурт, циперметрин (шерпа), альфаметрин (фастак), β-циперметрин (кинмикс));

 

Перметрин

Шерпа (Циперметрин)


Таллометрин

в) производные 3-(2,2-дибромвинил)-2,2-диметилциклопропанкарбоновой дельтаметриновой кислоты (дельтаметрин (децис));

г) производные 3-(1,2,2,2-тетрабромэтил)-2,2-диметилциклопропанкарбо-новой кислоты (траллометрин (скоут));

д) производные 3-(2-хлоро-3,3,3-трифторпропенил)-2,2-диметил-циклопропанкарбоновой кислоты (цигалотрин, *λ-цигалотрин (каратэ)(2 изомера цигалотрина));

 

Цигалотрин

 

е) производные 2,2,3,3-тетраметилциклопропанкарбоновой кислоты (фенпропатрин (дакатол)).

.   Производные 3-метилбутановой (изовалериановой) кислоты:

*Фенвалерат (сумицидин)(4);

*Эсфенвалерат (суми-альфа) (изомер фенвалерата).


Фенвалерат

Физические свойства

Применение: В виде КЭ, аэрозолей и реже- в виде СП, дустов. В препаратах сочетают с синергистами (чаще с пиперонилбутоксидом в 5-10 кратном избытке) или с ФОС.

Инсектициды.

Токсические свойства

Синтетические пиретроиды относятся к ядам нервного действия.

Токсичность синтетических пиретроидов связывают с их способностью влиять на окислительно-востановительные системы.

Соединения рассматриваемой группы изменяют активность ферментов переаминирования, содержания мочевины и общего белка в сыворотке крови.

На клеточном уровне синтетические пиретроиды воздействуют на натриевые каналы нейронных мембран.

Синтетические пиретроиды индуцируют моноаминооксигиназную систему. Описано увеличение массы печени и увеличение содержания белка в крови у подопытных животных, подвергшимся воздействию синтетических пиретроидов.

Известно аллергическое действие пестицидов из группы синтетических пиретроидов.

Отдельные представители группы синтетических пиретроидов (например, дельтаметрин) проявляют выраженное кожно-резорбтивное действие.

Группа соединений синтетических пиретроидов включает вещества различной степени токсичности для теплокровных организмов и человека.

По величине LD50 для крыс (пероральное введение) высокотоксичными соединениями считают:

тефлутрин (22-35 мг/кг),

бифентрин (54 мг/кг),

дельтаметрин (128 мг/кг),

эсфенвалерат (75 мг/кг),

флуцитринат (67-80 мг/кг)

фенпропатрин (70-164 мг/кг),

фенфлутрин (85-120мг/кг),

циперметрин (250-300 мг/кг),

флуваминат (260-280 мг/кг).

Соединениями средней токсичности являются:

перметрин (500-4000 мг/кг),

фенвалерат (451 мг/кг),

аллетрин (920 мг/кг),

тралометрин (1070-1250 мг/кг),

цифлутрин (590 мг/кг),

цифенотрин (318-419 мг/кг).

Малотоксичные соединения:

тетраметрин (5000мг/кг),

ресметрин (4240 мг/кг),

фенотрин (10000 мг/кг).

Пути поступления в организм

Путями поступления синтетических пиретроидов в организм, приводящими к отравлениям различной степени тяжести, являются: пероральный, перкутанный и ингаляционный.

Метаболизм

Метаболизм синтетических пиретроидов в организме человека изучен недостаточно. В результате метаболизма СП образуется около 20 или более метаболитов. Основой путь метаболизма у крысы - разрыв эфирной связи (гидролиз), окисление кислой (по диметильной группе) и спиртовой (в 2'4' и 5'-положении фенильного остатка) частей её, а также превращение цианогруппы (при её первоначальном наличии) в тиоцианатную и 2-аминотиазолидин-4-карбоновую кислоту. Эти производные кислотной и спиртовой части молекулы синтетических пиретроидов образуют коньюгаты с серной кислотой, глицином и глюкуроновой кислотой.

Выделение из организма

Из организма человека синтетические пиретроиды в неизменном виде или в виде продуктов биотрансформации выделяются в основном с мочой и калом. 64-77% введённой дозы дельтаметрина (при пероральном введении) выделялось с мочой и калом в течение четырёх суток. Максимальный уровень дельтаметрина в плазме крови наблюдается через 1-2 часа после введения. Период полураспада в плазме крови составляет 10-1 1,5 ч, в моче - 10-13,5 ч.

Очистка

Первичная очистка синтетических пиретроидов, изолированных из биологического материала, состоит в фильтровании извлечений или их центрифугированием.

В случае если изолирование осуществляется водными растворителями или смесями гидрофильных органических растворителей с водой или водными растворами, очистка от пептидов и липидов может осуществляться путём обработки извлечения электролитами и отделения выпавшего осадка фильтрованием или центрифугированием.

Если в качестве изолирующих агентов гидрофильные органические растворители или их смеси с водой и водными растворами, очистку полученных извлечений от липидов, возможно, провести методом вымораживания. При этом извлечение, представляющее собой раствор анализируемых и соэкстрактивных веществ в смеси органического растворителя с водой или водным раствором, охлаждают до низких температур и отделяют органический слой, содержащий синтетические пиретроиды, от замерзшей воды и выпавшего в осадок жира.

Для очистки изолированных синтетических пиретроидов от значительной части соэкстрактивных веществ достаточно часто применяют метод жидкость-жидкостной экстракции. Если синтетические пиретроиды произолированы гидрофильными растворителями, то извлечение разбавляют водой, а анализируемые вещества экстрагируют из полученной смеси гидрофобной органической жидкостью (гексаном, толуолом, хлороформом и т.п.). Если изолирующий агент - гидрофобное органическое вещество, то полученное извлечение упаривают до сухого остатка, остаток растворяют в гидрофильном органическом растворителе, раствор разбавляют водой, а синтетические пиретроиды экстрагируют из него гидрофобным органическим растворителем.

В случае если изолирующий агент - подкисленная вода, то в процессе очистки синтетические производные экстрагируют из полученного извлечения гидрофобным органическим растворителем.

Важнейшим методом очистки синтетических пиретроидов является хроматография. При этом могут использоваться различные виды хроматографии:

·   колоночная адсорбционная

·   колоночная гель - хроматография

·   тонкослойная адсорбционная и т.д.

Для очистки синтетических пиретроидов от сопутствующих веществ может применяться хроматография в колонке - силикагелями. При этом пиретроиды вводятся в колонку в виде хлороформного раствора, а элюируются из сорбента этанолом.

Очистка синтетических пиретроидов возможна на колонках с дезактивированным флорисилом (силикагель магния), нейтральным дезактивированным оксидом алюминия.

Для очистки синтетических пиретроидов применяют гель -хроматографию в колонках Сефадекса LH-20, полистирольных гелей Bio-Beads S-X2 и S-X3, способных набухать в среде органических растворителей. В качестве элюентов при этом используют индивидуальные органические растворители или их смеси.

Из других хроматографических методов, для очистки синтетических пиретроидов, изолированных из биологического материала, широко применяется хроматография в тонких слоях сорбентов (силикагеля, оксида алюминия, а также силикагеля с привитыми алкильными радикалами).

Идентификация

1. Метод ТСХ.

·   Силикагель («Силуфол» UV-254). Гексан - ацетон (40:10): перметрин 0,61; суми-альфа 0,40; фенвалерат 0,34; циперметрин 0,44.

·   Оксид алюминия. Гексан-хлороформ (60:40). Перметрин 0,82 0,87; фенвалерат 0,45; циперметрин 0,49 0,57

Обращённофазовая ТСХ. Диоксан - вода

. Метод газожидкостной хроматографии (ГЖХ).

Данным методом синтетические пиретроиды идентифицируются как непосредственно, так и после получения на их основе соответствующих производных. Одним из путей дериватизации данных веществ является их щелочной гидролиз, и последующая этерификация спиртовой части молекулы (обычно хлорангидридами галогенарилкарбоновых кислот).

Другим вариантом получения производных является гидролиз синтетических пиретроидов в присутствии щёлочи и этерификация кислотной части молекулы (обычно низшими спиртами в присутствии серной кислоты).

Обычно чувствительность определения галогенсодержащих синтетических пиретроидов методом ГЖХ выше, чем синтетических пиретроидов, не содержащих в своей структуре галогены.

Для определения синтетических пиретроидов (в частности дельтаметрина) в трупном материале может применяться ГЖХ с использованием неподвижной фазы OV-17, и ПИД.

Среди методик, рекомендованных в нашей стране, определение дельтаметрина, сумицидина, каратэ и фастака методом ГЖХ при гигиенических исследованиях рекомендуется, в частности, проводить на хроматографе «Цвет» с детектором постоянной скорости рекомбинации (ДПР) в колонке 0,5м х 3 мм с 5% SE-30 на Хроматоне N-AV, при температуре термостата колонки и испарителя 250°С, детектора-280°С. Газ - носитель - азот о. ч., скорость подачи подвижной фазы - 40 мл/мин.

Линейная зависимость интенсивности сигнала детектора от концентрации определяемого вещества колеблется в интервале 0,1 -10 нг. Определение циперметрина, изолированного из тканей органов, можно проводить на хроматографе «Цвет-106» с ДЭЗ при использовании стеклянной колонки 0,5м x 3мм, заполненной 3% OV-17 на Инертон-супер (0,125-0,160), или колонке 0,5м х 3мм заполненной 5% SE 30 на Хроматоне N-AW-HDMC (0,125-0,160). Температура термостата колонки 250°С, испарителя 280°С, детектора 270°С. Скорость подачи газа-носителя (азота)- 28 мл/мин., при продувке детектора - 120 мл/мин.

Минимально-обнаруживаемое количество анализируемого вещества - 0,2 нг. Определение синтетических пиретроидов с достаточно высокой селективностью, позволяющей разделить их изомеры, может также проводиться в капиллярных колонках длинной 12-30 м. с не подвижными фазами SE-30, OV-101, Dexil 300, Dirabond, SE-54, ХЕ-60 и т.д.

Хромогенные реакции

1. Реакция нитрования

Сухой остаток, содержащий анализируемое вещество, обрабатывают 10%-ым раствором нитрата калия в концентрированной серной кислоте, разбавляют реакционную смесь водой и прибавляют 10%-ый раствор ■ гидроксида натрия до щелочной реакции раствора. В присутствии синтетических пиретроидов появляется жёлтое или жёлто-коричневое окрашивание.

2. Реакция с 2,4,6-тринитрофенолом (пикриновой кислотой).

Сухой остаток, содержащий анализируемое вещество обрабатывают концентрированным раствором щёлочи в среде вода-этанол (1:1) при нагревании, а затем вносят реакционную смесь в пробирку с 2,4,6-тринитрофенолом. В присутствии пиретроидов, содержащих в своей структуре циано-группу развивается оранжево-красное окрашивание.

Количественное определение

1. Спектрофотометрия по собственному поглощению в УФ-области спектра и на основе хромогенных реакций.

2. Газожидкостная хроматография.

Лекция

Группа веществ, изолируемых экстракцией органическими растворителями - пестициды


План



Поделиться:


Последнее изменение этой страницы: 2020-03-02; просмотров: 185; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.19.251 (0.228 с.)