Конечный пользователь как потребитель упаковки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Конечный пользователь как потребитель упаковки



Вполне естественное стремление производителя продуктов питания сэкономить на себестоимости процесса зачастую заставляет его игнорировать интересы конечного потребителя этой продукции. Новый, быстро развивающийся рынок упаковки не остался без внимания индустрии подделок и банального мошенничества. К примеру, около 30% всех потребителей биаксиально ориентированного полипропилена, привезенного из Индии и Китая и используемого для упаковки чипсов, мороженого, снеков, хлеба и круп, на самом деле покупают обычный полипропилен, не имеющий уникальных потребительских свойств БОПП. А большинство молокозаводов не подозревают о том, что разливают молоко в двух-, а не трехслойную молочную пленку, что вызывает быстрое разложение витамина А и просто порчу продукта. Мясоперерабатывающие предприятия часто фасуют колбасные нарезки в однослойные пленки вместо трех- и пятислойных с барьерными свойствами. Потребитель же, покупающий эту нарезку в магазине, не обязан знать, что барьерные слои в упаковке необходимы для защиты от проникновения кислорода или ультрафиолета, ведущих к разложению белков.

Интересен тот факт, что доля упаковки в стоимости самого продукта почти всегда ничтожна. К примеру, вакуумный пакет под сосиски стоит порядка 35-45 копеек за штуку. При этом оптовая цена пачки сосисок составляет 33-38 рублей. Для любого покупателя не столь принципиально, купить эту пачку за 38 рублей или 38 рублей 70 копеек. Таким образом, даже двукратное увеличение цены упаковки, призванное улучшить ее качество, обеспечить надежное хранение продукта, не ударит по кошельку потребителя и не увеличит стоимость потребительской корзины в стране, [И2].

Цели и задачи дипломного проекта:

Ø Изучить производство многослойных материалов

Ø Исследовать физико-механические свойства исходных материалов, применяемых для производства многослойных материалов

Ø Изучить методы контроля качества многослойных материалов, полученных методом каширования

Ø Исследовать качество многослойных материалов, полученных методом каширования

Ø Изучить теории адгезии

 


Технология каширования

Основные понятия и определения

 

Каширование - получение многослойных материалов методом склеивания.

Фольга кашированная - упаковочный материал, состоящий из алюминиевой фольги и бумаги со специальными влагопрочными свойствами. Они соединены между собой слоем полиэтилена или клея. Подобная структура обеспечивает высокую светозащиту и увеличение срока годности продукта, прочность и непромокаемость упаковки, отсутствие жировых пятен на ее поверхности.

Физико-механические свойства - складываются из двух составляющих: физические - свойства, присущие материалу в состоянии покоя (масса, плотность, вес); и механические - свойства, которые проявляются в материале под действием различных нагрузок (сопротивление разрыву, разрывная длина, поверхностная впитываемость, влагопрочность и т.д.)

 

Материалы, используемые для производства многослойных материалов методом каширования

Бумага

Исторический экскурс.

Одним из изобретателей бумаги считается Цай Лунь, придворный советник императора Хо, живший во II веке н.э. Он предложил изготавливать бумагу из волокнистых растений с помощью каменной ступы, деревянного пестика и сита. С шелковицы (распространенное в Китае дерево) срезали сучья, внутреннюю волокнистую часть размачивали в воде, рубили на мелкие части и толкли в ступе до получения в кашицу, которую потом собирали водой. Массу вычерпывали ситом, вода стекала, и на поверхности оставался ровный тонкий слой будущей бумаги. Ее опрокидывали на гладкую доску. Доски с волокнистой массой складывали в стопу одна на другую и прижимали грузом. Окрепшие под прессом листы сушили. Полученная бумага была легкой, прочной и удобной для письма.

На рубеже II и III веков новой эры бумага, изготовленная из растительных волокон, не считалась в Китае редким материалом. В III веке она полностью вытеснила из употребления деревянные таблички, используемые для письма. Бумагу изготовляли определенного формата, цвета, веса, пропитывали специальными веществами, которые отпугивали вредных насекомых. Китайская бумага хранилась очень долго. С давних времен в Китае существовал оригинальный способ размножения текстов с помощью печаток. Первоначально оттиски делали на глиняных и бамбуковых дощечках, позже для этих целей стали использовать бумагу. Бумага позволила расширить копирование рукописей священных книг. Из бумаги делали всевозможные украшения, зонты, веера, в нее заворачивали продукты, она вставлялась в окна. В начале 9-го века в Китае появились «летающие монеты» - бумажные деньги. В течение многих веков китайцы единолично владели секретами изготовления бумаги, ревностно оберегая тайны ремесла.

Появление бумаги в России датируется XII-XIII столетиями. Первые бумажные мельницы появились вначале XVII века. Технический переворот в бумажном производстве России произвела бумагоделательная машина, начавшая работать с 1816 году в Петербурге. В 1916 году в России уже действовало 55 целлюлозно-бумажных предприятий. Средняя ширина бумагоделательных машин не достигала и 2 м, а их скорости не превышали 100 м/мин.

Бумага - это многокомпонентная система, состоящая из специально обработанных растительных волокон, тесно переплетенных между собой и связанных химическими связями. Это капиллярно-пористый материал. Помимо волокнистых компонентов, формирующих структуру бумаги и ее основные свойства, в состав бумаги могут вводиться минеральные наполнители (проклеивающие вещества, красители и др. специальные добавки). Основными волокнистыми полуфабрикатами являются: древесная целлюлоза, получаемая химической обработкой древесины и древесная масса, то есть механически измельченная древесина - дешевый и широко используемый компонент бумаги. Особое место занимает бумага из хлопковых и синтетических волокон.

Бумага различается по толщине или по массе одного квадратного метра (например 80г/м2 - самая распространенная бумага для офисной техники). По принятой классификации масса 1 м2 печатной бумаги может составлять от 40 до 250 граммов. При большей массе материал бумагу называют картоном.

Свойства бумаги.

По способу печати бумага обычно подразделяется на офсетную, типографскую и для глубокой печати. Печатные свойства бумаги - это свойства, определяющие ее поведение до печати (т.е. прохождение ее через бумагопроводящую систему печатной машины), во время печати (взаимодействие бумаги с печатной краской и процесс закрепления изображения) и после печати (операции фальцовки, брошюровки, подрезки, а также эксплуатационные характеристики готовой продукции). Все эти свойства, можно объединить в следующие группы:

. физические: гладкость, толщина и масса 1 м2, плотность и пористость;

. оптические: белизна, непрозрачность, лоск (глянец);

. показатели однородности структуры, бумаги: равномерность просвета, разносторонность;

. механические (прочностные и деформационные): прочность поверхности к выщипыванию, разрывная длина или прочность на разрыв, прочность на излом, влагопрочность, мягкость и упругость при сжатии и т.д.;

. сорбционные: гидрофобность (стойкость к действию воды), впитывающая способность растворителей печатных красок.

Физические свойства бумаги:

Гладкость бумаги, микрорельеф ее поверхности определяет «разрешающую способность» бумаги - т.е. способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше контакт между ее поверхностью и печатной формой, тем меньшее давление нужно приложить при печатании, тем выше качество изображения. Гладкость бумаги определяется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о поверхности бумаги. Различные способы печати предъявляют к бумаге разные требования по гладкости. Так каландрированная типографская бумага должна иметь гладкость от 100 до 250 секунд, а офсетная бумага той же степени отделки может иметь гладкость гораздо ниже - 80-150 секунд. Бумага для глубокой печати отличается повышенной гладкостью, которая составляет от 300 до 700 секунд. Газетная бумага не может быть гладкой из-за пористости. Существенно улучшает гладкость поверхности нанесение любого покровного слоя, - поверхностная проклейка, пигментирование, мелование (которое, в свою очередь, может быть различным, - односторонним и двухсторонним, однократным, многократным и т.д.).

Пористость. Она непосредственно влияет на впитывающую способность бумаги (то есть на ее способность воспринимать печатную краску) и вполне может служить характеристикой структуры бумаги. Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Макропоры, или просто поры - это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры - мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг, а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бумаг. Капилляры есть и внутри целлюлозных волокон. Все немелованные, не слишком уплотненные бумаги (например, газетная) - макропористые. Общий объем пор в таких бумагах достигает 60% и более, а средний радиус пор составляет около 0.16-0.18 мкм. Такие бумаги хорошо впитывают краску, благодаря своей рыхлой структуре. Мелованные бумаги относятся к микропористым (капиллярным) бумагам. Они тоже хорошо впитывают краску, но уже под действием сил капиллярного давления. Здесь пористость составляет всего лишь 30%, а размер пор не превышает 0.03 мкм. Остальные бумаги занимают промежуточное положение. Плотность печатных бумаг колеблется, в среднем, от 0.5 г./ см3 для рыхлых (пористых) и до 1.35 г./см3 для высокоплотных капиллярных бумаг.

Оптические свойства бумаги:

Белизна - это способность бумаги отражать свет рассеянно и равномерно во всех направлениях. Высокая белизна желательна, так как четкость, удобочитаемость издания зависит от контрастности запечатанных и пробельных участков оттиска. При многокрасочной печати, цветовая точность изображения, ее соответствие оригиналу возможны только при печати на действительно белой бумаге. Для повышения белизны в дорогие высококачественные бумаги добавляют так называемые оптические отбеливатели - люминофоры, а также синие и фиолетовые красители, устраняющие желтоватый оттенок, присущий целлюлозным волокнам. Этот прием называют подцветкой. Мелованные бумаги без оптического отбеливателя имеют белизну не менее 76%, а с оптическим отбеливателем уже не менее 84%. Печатные бумаги с содержанием древесной массы должны иметь белизну не менее 72%, а вот газетная бумага может быть недостаточно белой. Ее белизна составляет около б5%.

Непрозрачность. Это особенно важно при двухсторонней печати. Для повышения непрозрачности подбирают композицию волокнистых материалов, комбинируют степень их помола, вводят наполнители.

Лоск или глянец. Лоск, или глянец - это результат отражения поверхностью бумаги падающего на нее света. Естественно, это тесно связано с гладкостью бумаги. Обычно с повышением гладкости лоск тоже увеличивается. Но такое происходит не всегда, так как гладкость определяется механическим способом, а лоск - это оптическая характеристика. Глянец глазированной бумаги может составлять 75-80%, а матовой - до 30%.

Механические свойства бумаги:

Деформационные свойства проявляются при воздействии на материал внешних сил и характеризуются временным или постоянным изменением формы или объема тела. Основные технологические операции полиграфии сопровождаются существенным деформированием бумаги. Бумага подвергается различным деформирующим воздействиям: растяжению, сжатию, изгибу. От того, как ведет себя бумага при этих воздействиях, зависит нормальное течение технологических процессов печатания и последующей обработки.

Сорбционные свойства бумаги:

Впитывающая способность. Впитывающая способность бумаги, в первую очередь, зависит от ее структуры. Если изобразить структуры бумаги в виде шкалы, то на одном из ее концов разместятся крупнопористые бумаги, состоящие целиком из древесной массы. Другой конец шкалы займут чистоцеллюлозные микропористые бумаги. Немного левее расположатся чистоцеллюлозные немелованные бумаги, тоже микропористые. А все остальные займут оставшийся промежуток, [И3].

Фольга

Алюминиевая фольга выпускается в виде тонких, равномерных по толщине листов (либо полотен) металлического алюминия или алюминиевых сплавов. Этот материал бывает и очень мягким, и твердым. Он широко применяется как в чистом виде, так и в комбинациях с синтетическими пленками, бумагой или картоном, причем в качестве клеящего вещества используются воск или синтетические клеи.

Большинство видов алюминиевой фольги, которые запечатываются флексографским способом и затем перерабатываются в упаковку, имеют толщину от 5 до 150 мкм.

Алюминиевая фольга в горячем или холодном состоянии прокатывается между упрочненными полированными стальными валками до требуемой толщины. Фольга толщиной менее 25 мкм обычно имеет с одной стороны блестящую, а с другой - матовую поверхность, так как тонкие ленты прокатываются сдвоенными. Сторона, обращенная к валкам, получается блестящей, а та, что прилегает к другой ленте, - матовой. Как только поверхность алюминия приходит в соприкосновение с воздухом, она сразу же окисляется. Образуется тонкая, прозрачная, почти мономолекулярная поверхностная пленка окиси алюминия. Она препятствует дальнейшему окислению металла и защищает его от коррозии. Фольга обладает теми же свойствами, что и чистый алюминий.

Непроницаемость. При толщине алюминиевой фольги в 0,025 мм и выше она практически непроницаема для паров и газов. Даже при толщине в 0,009 мм степень пропускания водяного пара составляет лишь 0,01 г./м2 в сутки, что можно считать более чем приемлемым.

Гладкая фольга, кашированная специальными жиростойкими сортами бумаги (пергамент и подпергамент), традиционно используется для упаковки масла, маргарина, сырковой массы и других жиросодержащих продуктов.

Синтетические материалы имеют в основе своей цепочкообразные макромолекулы, удерживаемые вместе благодаря силам сцепления. Однако в структуре вещества при этом остаются весьма существенные полые пространства. При разности давлений водяного пара на двух сторонах синтетической пленки создается парциальное давление. В результате происходит проникновение водяного пара с более влажной стороны пленки сквозь сетку макромолекул на более сухую и повторное испарение.

Фольга же имеет более упорядоченную сетку из атомов металла, расположенных так плотно, что никакой газ помимо водорода проникать через нее не может.

Это свойство фольги определило ее многолетнее применение в упаковке пищевых продуктов. Когда-то фарш, творожная масса, масло и другие скоропортящиеся продукты упаковывались исключительно в фольгу. Альтернативой служила лишь вощеная бумага или пергамент, который, конечно, не мог конкурировать с фольгой по срокам хранения продуктов. Потом появилось множество современных материалов, которые частично вытеснили фольгу с упаковочного рынка.

Исследование проницаемости различных материалов

Институтом Технологий производства пищевых продуктов и упаковки были проведены исследования проницаемости для водяных паров различных полимерных материалов и алюминиевой фольги (при толщине материала 100 мкм).

Результаты исследований представлены на диаграмме (значения даны в г/м2). Можно заметить, что проницаемость алюминиевой фольги в несколько раз меньше, чем у любого полимерного материала и даже их комбинаций. Следовательно, по проницаемости фольга - вне конкуренции.

Сопротивляемость коррозии. Совместимость с различными химическими веществами. Естественная поверхностная окись, которой покрывается алюминиевая фольга в воздушной среде, служит своего рода барьером и в значительной степени предотвращает возникновение коррозии и воздействие химически активных веществ.

Для упаковки мороженого используется фольга, кашированная влаго- и жиростойкой сульфидной бумагой. Фольга может быть как гладкой, так и тисненой (с различными текстурами)

Гигиеничность. Совместимость с любыми пищевыми продуктами. Алюминиевая фольга не токсична. Она не придает пищевым продуктам какого-либо постороннего запаха или привкуса, не пропускает воду и другие жидкости, не впитывает смазывающие вещества. В процессе производства фольга приобретает стерильность и не служит благоприятной средой для жизни бактерий. Она является материалом, инертным практически для любых пищевых продуктов, напитков, а также косметики и т.д. Этим объясняется и широкое применение фольги для упаковки медицинских препаратов, к условиям хранения которых предъявляются особенно жесткие требования. Обратите внимание: если производители косметической продукции все чаще выпускают средства по уходу за кожей в пластиковых тюбиках, то лечебные кремы и мази (как импортные, так и отечественные) традиционно продаются именно в алюминиевых тубах.

Для закупорки пластиковых стаканчиков используется фольга, покрытая термолаком, за счет которого и происходит приваривание к поверхности стаканчика. Сохранность продукта в стаканчике напрямую зависит от качества покрытия

Способность приобретать и сохранять заданную форму. Фольгу можно изгибать и складывать как угодно. Это, наверное, единственный материал, которому с такой легкостью можно придать требуемую конфигурацию. Едва ли удастся упаковать во что-нибудь кроме фольги, например, шоколадного Деда Мороза или зайца, точно повторив форму изделия.

Для обертки конфет и других кондитерских изделий используется лакированная фольга. Лакировка осуществляется как с декоративными целями, так и для улучшения сохранности продукта

Абсолютная непрозрачность. Опубликованные недавно результаты исследований, проведенных Институтом технологии продуктов питания и упаковки Фраунхофера (Германия), убедительно доказывают, что вкус и другие качества молочных продуктов могут довольно быстро ухудшаться под влиянием яркого света, который повсеместно используется в витринах-холодильниках магазинов.

В последнее время для конфет и других кондитерских изделий вместо двойной обертки из бумаги и фольги используется тонкая тисненая фольга, кашированная бумагой. Это позволяет существенно упростить процесс упаковки

В качестве объекта исследования были взяты сливки 30-процентной жирности, разлитые в разные упаковочные емкости: полипропиленовые и полистироловые стаканчики с крышками из полипропилена, полистирола и алюминиевой фольги. Сливки в вышеназванных упаковках при температуре в 8°С выдерживались в течение заданного времени под воздействием света разной интенсивности: 500, 950 и 1600 люкс. Параллельно контрольные образцы находились при той же температуре, но в полной темноте, чтобы испытатели могли произвести сравнение и выделить изменения, возникшие лишь под воздействием света.

В сериях тестов при освещенности в 950 люкс нежелательные изменения продукта (от легкого до сильного запаха прокисания и выраженной прогорклости) были обнаружены почти с самого начала. Что касается консистенции продукта, то прошла неделя, прежде чем было замечено разрушение гомогенности - свертывание. Тем не менее, упаковки с алюминиевыми крышками в целом показали существенно лучшие результаты. Нежелательные изменения их содержимого были вызваны воздействием лишь непрямого и рассеянного света, попадавшего на сливки через основную емкость. Изменения интенсивности освещения смещали сроки порчи продукта, но суть оставалась той же.

Заключение экспертов было следующим: алюминиевые крышки обеспечивают для находящихся на свету сливок лучшую защиту, чем крышки, изготовленные из пластмассы.

Для упаковки медицинских препаратов и фармацевтических средств используется специальная, так называемая «блистерная» фольга с термосвариваемым слоем

Результаты этих исследований подтвердили заключения, сделанные учеными того же института ранее на основании экспериментов, исследовавших воздействие света на йогурт.

Отсутствие способности к притягиванию. В отличие от широко используемых в настоящее время гибких пленок, фольга является материалом, практически исключающим возникновение статического электричества, что делает ее удобной при работе на упаковочном оборудовании.

Конечно, у фольги есть и свои недостатки. Один из них - достаточно низкое сопротивление механическому воздействию. Для ликвидации этого и других недостатков были изобретены гибридные материалы, в которых фольга комбинируется в различных сочетаниях с лаком, бумагой, картоном, полимерными пленками.



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 104; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.186.6 (0.024 с.)