Потенциал разложения. Явления поляризации электродов. Перенапряжение водорода 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Потенциал разложения. Явления поляризации электродов. Перенапряжение водорода



 

Когда электрод находится при потенциале, равном равновесному, на немустанавливается электрохимическое равновесие:

Ox + nē → Red

При смещении потенциала электрода в положительную или отрицательную сторону на нем начинают протекать процессы окисления или восстановления. Отклонение потенциала электрода от его равновесного значения называется электрохимической поляризацией или просто поляризацией.

Поляризацию можно осуществить включением электрода в цепь постоянного тока. Для этого необходимо составить электролитическую ячейку из электролита и двух электродов ‑ изучаемого и вспомогательного. Включая ее в цепь постоянного тока, можно сделать изучаемый электрод катодом или (при обратном включении ячейки) анодом. Такой способ поляризации называется поляризацией от внешнего источника электрической энергии.

Рассмотрим простой пример поляризации. Пусть медный электрод находится в 0.1 н. растворе CuSO4, не содержащем никаких примесей, в том числе растворенного кислорода. Пока цепь не замкнута, потенциал электрода при 25°С будет иметь равновесное значение, равное

φ = 0.337 + 0.030 lg10-1 = 0.31 В

а на границе металла с раствором установится электрохимическое равновесие:

Cu2+ + 2ē →Сu

Подключим электрод к отрицательному полюсу источника тока ‑ сделаем его катодом. Избыток электронов, который появится теперь на электроде, сдвинет потенциал электрода в отрицательную сторону и одновременно нарушит равновесие. Электроны будут притягивать катионы меди из раствора ‑ пойдет процесс восстановления:

Cu2+ + 2ē →Сu

Если подключить электрод не к отрицательному, а к положительному полюсу источника тока ‑ сделать его анодом, то вследствие удаления части электронов потенциал электрода сместится в положительную сторону и равновесие также нарушится. Но теперь на электроде будет протекать процесс окисления, так как в ходе этого процесса высвобождаются электроны:

Сu → Cu2+ + 2ē

Таким образом, поляризация электрода в отрицательную сторону связана с протеканием процесса восстановления, а поляризация в положительную сторону ‑ с протеканием процесса окисления. Процесс восстановления иначе называют катодным процессом, а процесс окисления ‑ анодным. В связи с этим поляризация в отрицательную сторону называется катодной поляризацией, а в положительную ‑ анодной.

Поляризация электрода — необходимое условие протекания электродного процесса. Кроме того, от ее величины зависит скорость электродного процесса: чем сильнее поляризован электрод, тем с большей скоростью протекает на нем соответствующая полуреакция.

Кроме величины поляризации на скорость электродных процессов влияют некоторые другие факторы. Рассмотрим катодное восстановление ионов водорода. Если катод изготовлен из платины, то для выделения водорода с заданной скоростью необходима определенная величина катодной поляризации. При замене платинового электрода на серебряный (при неизменных прочих условиях) для получения водорода с прежней скоростью понадобится большая поляризация. При замене катода на свинцовый поляризация потребуется еще большая. Следовательно, различные металлы обладают различной каталитической активностью по отношению к процессу восстановления ионов водорода. Величина поляризации, необходимая для протекания данного электродного процесса с определенной скоростью, называется перенапряжением данного электродного процесса. Таким образом, перенапряжение выделения водорода на различных металлах различно.

 

1.13 Электрохимическая коррозия металлов. Причины образования коррозионных гальванических пар

 

Электрохимическое растворение металлов включает в себя две группы процессов: растворение за счет внешнего тока (анодное растворение) и в результате взаимодействия с компонентами среды (коррозия).

Коррозией называется процесс самопроизвольного разрушения металлов под влиянием внешней среды. В зависимости от характера разрушений различают сплошную коррозию, захватывающую всю поверхность металла, и местную, локализующуюся на определенных участках. Очаги разрушения в случае местной коррозии могут иметь вид пятен (пятнистая коррозия) или точек (питтинговая коррозия). Они могут захватывать зерна только одного из компонентов металлического сплава (избирательная коррозия), проходить через все зерна в виде узких трещин (транскристаллитная коррозия) или сосредоточиваться по границам зерен (интеркристаллитная коррозия).

Скорость и характер коррозии определяются прежде всего природой металла и окружающей его среды. Металлы в зависимости от скорости коррозии в данной среде разделяют на устойчивые и неустойчивые. На основе того, с какой скоростью данная среда разрушает металл, ее определяют как агрессивную или неагрессивную в коррозионном отношении. Корродируют, как правило, металлы (черные и цветные), встречающиеся в природе не в самородном состоянии, а как соответствующие минералы и руды.

Различают коррозию химическую и электрохимическую.

Химическая коррозия наблюдается при воздействии на металл различных веществ (жидкостей-неэлектролитов и газов) при высоких температурах. Таково окисление железа в воздухе при высоких температурах с образованием окалины.

Исключительно большое распространение имеет электрохимическая коррозия, т.к. часто протекает со значительной скоростью при обычной температуре, когда химическая коррозия почти не проявляется. Электрохимическая коррозия возникает при соприкосновении металла (сплава) с электропроводящей жидкостью (почвенной водой, водой в паровых котлах, различными реакционными средами, главным образом в химической промышленности).

Достаточно присутствия тонкой пленки жидкости на поверхности металла, чтобы электрохимическая коррозия стала возможной. Этот тип коррозии характеризуется возникновением электрических токов между различными участками металла (передвижение электронов), являющихся следствием электрохимических реакций на отдельных участках поверхности соприкосновения металла с электролитом.

Растворение металла в кислотах также можно считать электрохимической коррозией.

Так как коррозия сопровождается уводом электронов с поверхности металлов, она может происходить не только под действием разряжающихся ионов гидроксония, а может быть результатом действия любых окислителей, являющихся акцепторами электронов. Например, саморастворение металлов сильно ускоряется в присутствии в растворе кислорода воздуха, так как на поверхности металла протекает реакция:

1/2 O2 + 2e + H2O = 2OH-,

причём эта реакция протекает при более положительном потенциале, чем разряд ионов гидроксония.

Для объяснения коррозии Де-ла-Рив в 1830 году выдвинул идею локальных (местных) элементов, возникающих на поверхности металлов, погружённых в жидкость. Например, в случае контакта меди и железа образуется накоротко замкнутый элемент, растворимым полюсом которого является железо, так как электроны переходят от железа к меди. При контакте металлов электроны переходят от более электроотрицательного металла к более электроположительному, вследствие чего первый будет растворяться, а на втором будут разряжаться ионы гидроксония или восстанавливаться растворённый кислород. Это случай так называемой контактной коррозии. Такого типа коррозия может возникать и на одном металле в местах, подвергшихся различной обработке или при наличии различных инородных включений, особенно металлических. В этом случае образуются своеобразные микроэлементы, замкнутые через основной металл, работа которых приводит к усилению обычной коррозии. Реальное существование местных микроэлементов было доказано экспериментально Г.В.Акимовым. Он показал, что разности потенциалов между отдельными частями поверхности обычно равны нескольким милливольтам.

Было установлено, что коррозия возникает самопроизвольно и на однородной поверхности, поэтому нельзя связывать её только с действием локальных или местных элементов. Наличие этих элементов лишь усиливает коррозию.

А.Н.Фрумкин развил электрохимическую теорию коррозии металлов; он показал, что электрохимические реакции, обусловливающие коррозию, могут протекать при одном и том же потенциале на одном и том же участке поверхности металла. Проведённые расчёты потенциала свидетельствуют о весьма малом различии между отдельными участками поверхности металла.

 

Способы защиты от коррозии

 

Проблему защиты от коррозии нельзя решать, не учитывая связи коррозии с пассивностью. Если коррозия является процессом самопроизвольного растворения металлов, то пассивирование связано с потерей металлом этой способности. Следовательно, для предохранения металла от коррозии необходимо перевести его в пассивное состояние.

Некоторые металлы пассивируются в окислительных средах, например железо в концентрированных азотной и серной кислотах. Поэтому эти кислоты хранят в железных цистернах. Железо, никель, кобальт и магний пассивны и в щелочных растворах.

Устойчивыми к коррозии являются нержавеющие стали, содержащие кроме железа, хром, никель, марганец и малые добавки титана и ниобия. На изделиях из таких сплавов под действием воздуха и воды возникает химически и механически прочная окисная плёнка, которая полностью пассивирует металл.

Если при растворении металла (например, свинца в серной кислоте) образуются нерастворимые продукты, то они, отлагаясь на поверхности, могут тормозить или совсем предотвратить коррозию. Такого рода пассивирование можно назвать механическим.

Действие одних и тех же веществ может, в зависимости от внешних условий и природы металла, и ускорять, и замедлять коррозию. Присутствие в растворе кислорода воздуха часто увеличивает коррозию вследствие электровосстановления кислорода: O2 + 4e + 2H2O = 4OH-, в процессе которого электроны уходят из металла, и ионы последнего переходят в раствор. Если же легко образуется окисная плёнка или при коррозии появляются нерастворимые продукты, то кислород может не ускорять, а замедлять коррозию (например, коррозию алюминия и цинка на воздухе).

В нейтральных и щелочных растворах коррозия наблюдается в меньшей степени не только потому, что в этих растворах меньше концентрация иона водорода, но и потому, что в них легче образуются пассивирующие плёнки основного характера.

Ионы хлора, брома и йода, как правило, являются депассиваторами нержавеющих сталей и хрома в кислых и нейтральных средах, а никеля и железа – в щелочных. Следовательно, эти ионы способствуют коррозии.

В последнее время широкое применение в качестве замедлителей (ингибиторов) коррозии получили различные хорошо адсорбирующиеся вещества, часто органические соединения. Адсорбируясь на поверхности металла, эти вещества могут существенно снижать скорость электрохимических реакций, вызывающих коррозию. Ионы галогенов в кислых растворах способствуют адсорбции ряда органических соединений (преимущественно азотсодержащих органических оснований) на поверхности железа и мягких сталей и, следовательно, усиливают замедляющее действие ингибиторов.

Защитный антикоррозионный слой часто создают путём нанесения сплошного слоя устойчивой краски или другого металла. В последнем случае лучшим защитным действием будет обладать менее благородный металл, например железо лучше покрывать цинком, а не медью. Объясняется это тем, что при местных нарушениях покрытия коррозии будет подвергаться наименее благородный металл, так как в месте нарушения сплошной плёнки возникает элемент, в котором электроны переходят от менее благородного металла к более благородному, вследствие чего первый будет растворяться. Это явление широко используют для защиты от коррозии водопроводных труб, паровых котлов и вообще металлических конструкций. Их приводят в соприкосновение с полосами менее благородного металла и тем самым прекращают коррозию основного металла.

В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью. Любой метод защиты изменяет ход коррозионного процесса, либо уменьшая скорость, либо прекращая его полностью. Все методы защиты условно делятся на четыре группы:

1. Электрические методы.

2. Методы, связанные с изменением свойств корродирующего металла.

3. Методы, связанные с изменением свойств коррозионной среды.

4. Комбинированные методы.

Электрические методы защиты основаны на изменении электрохимических свойств металла под действием поляризующего тока. Наибольшее распространение получила защита металлов при наложении на них катодной поляризации. Плотность тока, обеспечивающая полную катодную защиту, называется защитным током. Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов с агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью и расход электроэнергии невелик. Катодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника (катодная защита), либо созданием гальванической пары с менее благородным металлом (Al, Mg, Zn и их сплавы). Он играет здесь роль анода и растворяется (протекторная защита).

Разработан метод защиты металлов от коррозии наложением анодной поляризации; он применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону. К электрическим методам защиты относится также электродренаж, применяемый для борьбы с разрушающим действием блуждающих токов на подземные сооружения.

Защита металлов, основанная на изменении их свойств, осуществляется или легированием, или специальной обработкой их поверхности. Обработка поверхности металла с целью уменьшения коррозии проводится одним из следующих способов: покрытием металла пассивирующими пленками его труднорастворимых соединений (оксиды, фосфаты, сульфаты, вольфраматы), созданием защитных слоев из смазок, битумов, красок, эмалей, нанесением покрытий из других металлов, более стойких в данных конкретных условиях (лужение, цинкование, меднение, никелирование, хромирование, свинцование).

Защитное действие большинства поверхностных пленок можно отнести за счет механической изоляции металла от окружающей среды. Общий недостаток этих методов – при удалении поверхностного слоя скорость коррозии на поврежденном месте резко возрастает. В этом отношении легирование является значительно более эффективным (хотя и более дорогим) методом повышения коррозионной стойкости металла.

Изменение свойств коррозионной среды достигается или соответствующей обработкой среды, при которой уменьшается ее агрессивность (уменьшается концентрация компонентов, особенно опасных в коррозионном отношении, например, удаление кислорода деаэрацией или др. методами, подщелачивание, снижение общего содержания солей), или введением в коррозионную среду небольших добавок специальных веществ – замедлителей (ингибиторов) коррозии.

Ингибиторы коррозии разделяют в зависимости от условий их применения на жидкофазные и парофазные (летучие); жидкофазные ингибиторы делят, в свою очередь, на ингибиторы коррозии в нейтральных, щелочных и кислых средах. До настоящего времени еще не удалось найти эффективных ингибиторов коррозии металлов в щелочных растворах. В качестве ингибиторов кислотной коррозии применяются почти исключительно органические вещества, содержащие азот, серу или кислород. Действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл-кислота. Действие большинства ингибиторов кислотной коррозии усиливается при одновременном введении добавок поверхностно-активных анионов (галогенидов, сульфидов, роданидов).

Комбинированные методы сочетают в себе два или несколько способов защиты: битумные композиции + катодная защита (подземные трубопроводы); покраска + ингибитор коррозии как один из ингредиентов красителя (механическая защита + электрохимическая); катодная поляризация + ингибиторы (в нейтральных и кислых средах). Результативный эффект комбинированной защиты обычно выше суммарного эффекта соответствующих индивидуальных методов.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-09; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.191.169 (0.015 с.)