Согласование быстродействия памяти и универсальных микропроцессоров 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Согласование быстродействия памяти и универсальных микропроцессоров



Универсальные микропроцессоры применяются в настольных или портативных компьютерах, а также во встраиваемых системах, и в настоящее время именно на них отрабатываются самые передовые решения по повышению быстродействия микросхем.

Паразитные емкости печатной платы компьютера или другого устройства, в котором используется микропроцессор, не позволяют достигнуть предельного быстродействия, с которым может работать кристалл микропроцессора. Кроме того, невозможно реализовать кварцевые резонаторы на частоты, на которых работают современные микропроцессоры. Поэтому внутренняя и внешняя тактовая частота микропроцессора различаются. Обычно внутренняя тактовая частота в несколько раз выше внешней.

Умножение внешней тактовой частоты внутри кристалла процессора производится при помощи схемы фазовой автоподстройки частоты, поэтому для установления стабильной внутренней частоты микропроцессора требуется некоторое время, определяемое обычно десятками микросекунд.

Первым фактором, огранивающим быстродействие микропроцессорной системы в целом, является то, что для увеличения доступной емкости системной памяти компьютера, используют микросхемы ОЗУ динамического вида. Однако они обладают относительно невысоким быстродействием. В результате возникает противоречие между высоким быстродействием микропроцессора и недостаточным быстродействием системной памяти, что ограничивает производительность микропроцессорной системы в целом.

В качестве решения этой проблемы в современных компьютерах предлагается использование кэш-памяти. Эта память с точки зрения программиста никак не видна и общий объем системной памяти вследствие ее наличия не увеличивается.

Кэш-память выполняется в виде статической памяти небольшого размера и высокого быстродействия. Она ставится как буфер между основной памятью и микропроцессором. Кэш-память располагается на материнской плате. Естественно, что при первом обращении к системной памяти быстродействие снижается на задержку, вносимую копированием информации в кэш-память. Выигрыш в быстродействии достигается при повторном обращении к одному и тому же участку памяти. В этом случае обращение к основной памяти не требуется, так как в кэш-памяти уже хранится копия содержимого основной памяти. Учитывая, что выполнение программ обычно реализуется в виде циклов, когда один и тот же участок программного кода повторяется многократно, общее быстродействие системы в целом будет определяться быстродействием кэш-памяти. Всю логику работы с кэш-памятью выполняет контроллер памяти, входящий в набор микросхем (chip set) материнской платы компьютера.

Рассмотренный выше метод увеличивает общее быстродействие системной памяти, но только до значения тактовой частоты системной шины (внешняя тактовая частота микропроцессора). Согласовать внутреннее быстродействие микропроцессора и быстродействие системной шины позволяет использование внутренней кэш-памяти. Естественно, ее объем меньше, чем у кэш-памяти, расположенной на материнской плате компьютера.

При рассмотрении принципов работы цифровых микросхем мы узнали, что потребляемый микросхемой ток определяется быстродействием микросхемы, поэтому внутренняя кэш-память в свою очередь разделяется на два уровня: первый уровень малого объема, но высокого быстродействия, совпадающего с внутренним быстродействием микропроцессора, и второй уровень, с большим объемом памяти, но с меньшим быстродействием. Кэш-память, расположенную на материнской плате, называют, продолжая нумерацию, кэш-памятью третьего уровня.

Итак, подведем итоги

В главе были рассмотрены схемы подключения к микропроцессору устройств хранения, ввода и вывода данных. Кроме того, были рассмотрены основные методы расширения адресного пространства микропроцессорной системы и некоторые решения, позволяющие повысить ее быстродействие. Структурные схемы приведены с уровнем детализации, достаточным для превращения их в принципиальные схемы.

Однако в настоящее время никто не разрабатывает схемы, подобные рассмотренным в данной главе, ведь это стандартные схемы. Поэтому в настоящее время на мировом рынке представлено огромное количество готовых микросхем, построенных по рассмотренным принципам. Теперь можно перейти к изучению этих микросхем, представляющих собой универсальные цифровые устройства.

 


 


I2C интерфейс, 15

SPI интерфейс, 14

адресное пространство, 3

Адресное пространство, 2

Асинхронный последовательный порт, 15

Внешнее устройство, 8

Вычитающие таймеры, 18

Диапазон доступных адресов микропроцессора, 3

диспетчер памяти, 5

клавиатура, 10

модуль захвата, 19

модуль сравнения, 19

Оконная адресация, 6

Параллельные порты, 10

Порт ввода-вывода, 12

порт ввода, 11

порт вывода, 11

Распределение памяти, 3

Свободнобегущие таймеры, 18

сегментная организация памяти, 5

синхронные последовательные порты, 13

Системная шина, 1

страничный метод адресации, 5

Суммирующие таймеры, 18

Таймеры, 17

Физический адрес, 5

шина адреса, 2

шина данных, 2

шина управления, 2

 

 


 


 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 236; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.22.135 (0.01 с.)