Фундаментальная система решений линейного однородного уравнения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Фундаментальная система решений линейного однородного уравнения



Определение. Любые линейно независимых решений линейного однородного дифференциального уравнения -ного порядка называется фундаментальной системой решений этого уравнения.

Из предыдущих теорем сразу следует еще одна важная теорема.

Теорема 7. Решения уравнения (2) образуют фундаментальную систему решений этого уравнения тогда и только тогда, когда их определитель Вронского отличен от 0 хотя бы в одной точке .

Доказательство. Равносильная переформулировка утверждения теоремы – решения линейно зависимы тогда и только тогда, когда на . Но это утверждение сразу следует из теорем 5 и 6.

Теорема 8. Для любого линейного однородного дифференциального уравнения (2) существует фундаментальная система его решений.

Доказательство. Построим такую фундаментальную систему решений. Для этого возьмем произвольную точку и поставим различных задач Коши: .

По теореме 1 о существовании и единственности у каждой из этих задач имеется решение, и мы обозначим - решение 1-й задачи, - решение 2-й задачи, …, - решение -ной задачи. Мы получили - решения уравнения (2). Найдем для этих функций: . Следовательно, по теореме 7, функции образуют искомую фундаментальную систему решений уравнения (2).

Теорема 9. Пусть - фундаментальная система решений уравнения (2). Тогда для любого решения этого уравнения существуют постоянные такие, что .

Доказательство. Возьмем произвольную точку и рассмотрим систему уравнений относительно неизвестных : (11). Определитель этой системы не равен 0, т.к. - фундаментальная система решений. Поэтому у нее существует (и притом единственное) решение . Рассмотрим теперь функцию . По теореме 2 она является решением уравнения (2). Ввиду равенств (11) значения этой функции и ее производных до порядка включительно в точке совпадают со значениями и ее последовательных производных в точке . По теореме 1 о единственности решения задачи Коши , .

Замечание. Теоремы 8 и 9 означают, что размерность векторного пространства решений уравнения (2) равна , а любая фундаментальная система решений представляет собой базис этого пространства

значениями и ее последовательных производных в точке . По теореме 1 о единственности решения задачи Коши , .

Замечание. Теоремы 8 и 9 означают, что размерность векторного пространства решений уравнения (2) равна , а любая фундаментальная система решений представляет собой базис этого пространства

 

Билет №15

Структура общего решения неоднородной системы

Любые n – r линейно независимых решений системы называются ее фундаментальной системой решений.

 

частное решение

 

Билет №16

Линейный оператор в (В линейном пространстве). Матрица линейного пространства

Линейные операторы. Матрица линейного оператора. Примеры линейных операторов.

Определение. Если каждому элементу ставится в соответствие единственный элемент , то говорят, что в пространстве Rn задан оператор, действующий в пространстве Rn.

Результат действия оператора A на элемент обозначают .

Если элементы и связаны соотношением , то называют образом элемента ; элемент прообразом элемента .

Множество элементов пространства Rn, для которых определено действие оператора A, называют областью определения оператора A и обозначают D ( A).

Множество элементов пространства Rn, которые являются образами элементов из области определения D ( A) оператора A, называют образом оператора A и обозначают Im(A). Если , то .

Ядром оператора называется множество элементов пространства Rn, образом которых является нуле

нулевой элемент. Ядро оператора обозначают Ker(A): .

 

Определение. Оператор A, действующий в пространстве Rn называется линейным оператором, если для любых из Rn и для любого числа α справедливо:

и .

Определение. Матрица, столбцами которой являются координаты образов соответствующих базисных векторов некоторого базиса в Rn

называется матрицей линейного оператора

Билет №17

Действия с линейными операторами и их матрицами

 

Рассмотрим линейный оператор , действующий в конечномерном линейном пространстве . Доказано, что образ линейного оператора линейное пространство. Размерность образа линейного оператора называется рангом оператора, обозначается .

Ядром линейного оператора называется множество элементов из , образом которых является нулевой элемент. Ядро оператора обозначают : . Ядро линейного оператора линейное пространство; размерность ядра линейного оператора называется дефектом оператора, обозначается : .

Для линейного оператора, действующего в n-мерном линейном пространстве , справедливы следующие утверждения:

сумма ранга и дефекта оператора равно размерности пространства, в котором действует оператор: ;

ранг оператора равен рангу его матрицы;

ядро оператора совпадает с множеством решений линейной однородной системы с матрицей , размерность пространства решений этой системы равна дефекту оператора, а ее фундаментальная система решений образует базис в ядре оператора;

столбцы, входящие в базисный минор матрицы оператора образуют базис в образе оператора.

Сформулированные утверждения позволяют описать структуру образа и ядра линейного оператора, заданного матрицей, используя язык матричных преобразований и общей теории линейных систем.

 

 

Билет №18

Преобразование координат вектора и матрицы линейного оператора. Их свойства и вычисления.

Пусть в -мерном линейном пространстве выбран базис , который мы будем для удобства называть "старый" и другой базис , который мы будем называть "новый". Возьмем призвольный вектор из . Его координатный столбец в старом базисе обозначим , а в новом -- . Нам нужно выяснить, как связаны друг с другом координаты в старом и в новом базисе. Для этого нам сначала нужно "связать" друг с другом старый и новый базисы. Запишем разложения новых базисных векторов по старому базису

Составим матрицу, столбцами которой служат координатные столбцы векторов нового базиса

Эта матрица называется матрицей перехода от старого базиса к новому.

Изменение матрицы линейного преобразования при изменении базиса

В предыдущем разделе мы установили, что как только в линейном пространстве выбран базис, то каждому линейному преобразованию соответствует матрица этого преобразования. Однако если выбрать в пространстве другой базис, то матрица преобразования, как правило, станет другой. Выясним, как эти матрицы связаны между собой.

Пусть -- -мерное линейное пространство, и -- два базиса в этом пространстве. Первый из них назовем "старым", а второй -- "новым". Пусть -- матрица перехода 19.1.4 а от старого базиса к новому.

Предложение 19.1 Пусть -- линейное преобразование пространства , и -- матрицы этого преобразования в старом и новом базисе соответственно. Тогда

Доказательство. Пусть -- произвольный вектор пространства , -- его образ, то есть . Пусть и -- координатные столбцы векторов и в старом базисе, а , -- в новом. Тогда в силу формулы (19.3) . По предложению 18.5 имеем , . Подставим эти выражения в предыдущую формулу, получаем . Откуда . С другой стороны, в силу формулы (19.3) в новом базисе . Сравнивая это равенство с предыдущим, получаем .

Определение 19.2 Две квадратных матрицы и одного порядка называются подобными, если существует такая невырожденная матрица , что .

Следствие 19.1 Матрицы одного линейного преобразования, соответствующие разным базисам, подобны друг другу, и наоборот, если матрицы подобны, то они являются матрицами одного и того же преобразования в разных базисах.

 

Билет №19.

Собственные значения и собственные векторы линейного оператора. Их свойства и вычисление.

Определение. Пусть A — линейный оператор, действующий в линейном пространстве Rn. Число называется собственным значением, а ненулевой вектор из Rn — соответствующим собственным вектором линейного оператора A, если они связаны между собой соотношением. .

По теореме о связи координат образа и прообраза имеем: , где E — единичная матрица, а — нулевой вектор Rn.

Это означает, что собственный вектор оператора является ненулевым решением линейной однородной системы . Ненулевое решение однородной системы (система нетривиально совместна), существует тогда и только тогда, когда определитель матрицы системы равен нулю: . Следовательно, собственные значения линейного оператора могут быть вычислены как корни уравнения , а собственные векторы — как решения соответствующих однородных систем.

Легко видеть, что определитель — многочлен n- й степени относительно .

Определение. Уравнение называется характеристическим уравнением оператора, а многочлен — характеристическим многочленом оператора.

Примеры.

1. Нулевой оператор : , матрица нулевого оператора — нулевая матрица соответствующего порядка, т.е. т.е. — единственное собственное значение нулевого оператора, а соответствующие собственные векторы — все ненулевые векторы пространства Rn.

Свойства собственных векторов

Для собственных значений и собственных векторов линейного оператора справедливы следующие утверждения:

1) характеристический многочлен оператора, действующего в Rn является многочленом n -й степени относительно ;

2) линейный оператор, действующий в Rn, имеет не более n различных собственных значений;

3) собственные векторы оператора определяются с точностью до постоянного сомножителя; поэтому принять вычислять собственные векторы единичной длины — орты собственных векторов;

докажем, что если — собственный вектор линейного оператора A, отвечающий собственному значению , то для любого отличного от нуля числа вектор ()— собственный вектор оператора A, отвечающий собственному значению : ;

4) корни характеристического многочлена не зависят от базиса;

5) собственные векторы, отвечающие различным собственным значениям, линейно независимы.

 


 

Поверхности 2-го порядка

 

 



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 575; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.40.207 (0.046 с.)